The Wildest Garden in Town

The garden is serene. Patches of yellow, cream, and rose pink water lilies ripple with the gentle water of the pond. A breeze rustles the leaves of the golden daylilies nearby. Suddenly an otter pops his head out from among the lily pads and looks quizzically at passersby. Another playful face breaks the surface of the water and glances around the shore before ducking under the water to resume her morning swim.

Otters in a botanical garden?

Well, not just any otter and not just any botanical garden. These Oriental small-clawed otters and their water lily-covered pond are both at home in the National Zoological Park in Washington, D.C.

In the past decade, zoos across the country have been adding more natural areas and landscaped settings for their animals. Zoos in San Diego, New York City, Chicago, Cincinnati, and Seattle have been foremost in creating state-of-the-art designs in zoological horticulture, but others are starting to include plants...
and garden designs in their master plans.

The First Zoos

The earliest zoos were menageries and animal shows where strange or exotic animals were caged and displayed as freaks of nature. The first American menagerie was organized in a small section of New York's Central Park in 1856.

Horticulture assumed a role only a few years later, according to Cincinnati Zoo horticulturist Dave Ehrlinger, in 1870 the Philadelphia Zoo became a zoological garden with plants incorporated into the public spaces and animal environments. Cincinnati followed suit a year later.

At first these zoos were groomed parklands rather than wild areas, Ehrlinger noted. Then in 1929, animal dealer Carl Hagenbeck of Hamburg, Germany, paved the way to today's greater naturalism by building the first cageless zoo. To create an illusion of wild animals roaming free, Hagenbeck substituted ditches, moats, and rock piles for metal bars.

The newest impetus to zoological horticulture is concern about the environment. Modern zoos are creating exhibits to increase awareness of the interdependence between plants and animals and the need for biological diversity.

Ric Hider, horticulturist with the National Zoo, defines zoo horticulture as "horticulture with the complication of animals." Like most gardeners, zoo horticulturists do everything possible to create optimum conditions for the plants in their care. But giraffes kicking the bark off maple trees and zebras digging up the lawn aren't problems for most gardeners. Such difficulties are commonplace at zoos, where horticulturists must make plants serve a number of functions while dealing with the animals' frequent lack of reverence for the landscaping.

"We're dealing with an animal in an enclosed space," says Hider. "We have to define what will survive in that space." Elephants will eat all the plant material within reach; a rhinoceros will bulldoze right through plant barriers such as shrubs and bushes.

But animals aren't the only threat to the plants, he said. "Our second concern is the public. In general, a zoo's clientele is much younger than the average botanical garden visitor—May the zoo averages 200 buses of school children a day—and visitors are there to look at the animals, not to admire or respect the plant material."

But the effort is worth it, because zoo plants are much more than just attractive foliage and bright blooms. Low-growing shrubs and vines may be used to create natural barriers or to disguise existing physical barriers between different animals or between the animals and the public.

Zoo Plants for People

Landscaping public areas is another important aspect of zoological horticulture. Lynden Miller—a public garden designer and winner of AHS's Landscape Design Award in 1989—was hired by the Central Park Zoo's architects to redesign the Central Garden around its seal pool. The project was funded by the Wallace Fund established by DeWitt and Lila Wallace, founders of Reader's Digest. Mrs. Wallace asked that the funds be used for perennials.

A hedge of \textit{flex crenata} 'Microphylla' separates the Central Garden from other zoo areas. Paths of hexagonal paving and teak benches were laid out to avoid the roots of the existing 50-year-old crab trees. Four beds contain 500 shrubs and 2,000 perennials, planted in large drifts to provide form and structure.

Miller's favorite combinations include purple coneflower (\textit{Echinacea purpurea} 'Bright Star') with gray Russian sage (\textit{Caryopteris clandonensis}) and \textit{Coreopsis} 'Moon Beam' with \textit{Stachys byzantina} 'Silver Carpet'.

Since the zoo has visitors throughout the year, the Central Garden is designed to be handsome in every season. Junipers, Colorado spruces, and weeping hemlocks along with oak-leaved hydrangeas, cut-leafe Japanese maples, and hybrid bluebeards (\textit{Carptatis x clandonensis}) add fall and winter interest. In summer, annuals like white \textit{Nicotiana sylvestris} and purple-blue \textit{Salvia farinacea} 'Victoria' and 'Indigo Spires' complement the perennial beds.

Although Miller didn't have to design the garden with consideration for the seals—animals don't have access to the Central Garden—she "thought it would be amusing to add plants with animal names since we were working in the zoo." Included in the menagerie are foxgloves, pink and white snapdragons, crab trees, and red-twig dogwoods.

And even though zoo-goers don't usually visit the gardens, Miller notes proudly: "The public actually noticed—and really liked—the garden!"
Good plant habitats make the animals feel comfortable and secure. Plants may provide nesting areas, hiding places, or perches. In doing so, they both create attractive living areas for the animals and help educate the public about an animal's natural habitat.

Education is a key aspect of zoological horticulture. Zoos may keep vegetable gardens to teach the public about animal diets. The Central Park Zoo's bamboo plantings provide a special treat for their red panda while snow monkeys and colobus monkeys enjoy weeping willow branches. Grape leaves are a favorite among the primates. A zoo nursery may also provide browse—young twigs, leaves, and tender shoots—for animals to nibble on.

Picking the Plants

While it's unlikely that horticulturists will trek to the Amazon to bring back a 35-foot tree, they do try to acquire plants indigenous to an animal's natural habitat. Where native plants can't be used—due to climate considerations and/or unavailability—horticulturists may add a diversity of plants that complement the natural environment. In the National Zoo's pygmy hippo enclosure, lush greenery has been chosen with an eye to softening the existing architecture. Massing, cascading, and upright species—fishtail and Boston ferns, philodendrons, raphis palms, *Thunbergia, Tetrastigma, Cissus, dracaenas,* weeping figs, and *Monstera*—are planted above the pygmy hippo pools. When the plants are mature they will camouflage their containers. Cascading Epipremnum will grow down to the pool level where the munching of the pygmy hippos will keep them neatly cropped.

The aviary at the Central Park Zoo recreates a rainforest environment. Large ficus trees and various ferns combine with bougainvilleas, passion vines, and *Aristolochia* to create a lush tropical atmosphere. Flowering vines provide a succession of blooms that are much enjoyed by nectar-feeding birds.

Chemical pest control is out of the question in these situations. The Central Park Zoo uses some biological controls; ladybugs keep down scale and mealy bugs in the aviary, where the birds also do their part. All exhibits there are as naturalistic as possible. "Plants that don't make it are left to die a natural death," says one of the zoo's horticulturists, Nancy Tim. "We may cut a palm from back, but we usually just leave it unless it poses a threat to the animal. There is certainly no gardener pruning the Costa Rican jungle!"

The Woodland Park Zoo in Seattle has been a leader in naturalistic exibitory since mid-1970. One of the zoo's most recent horticultural projects, an Asian elephant exhibit, was a three-year endeavor by the Seattle design firm of Jones & Jones. A four-and-a-half-acre site covered with mature trees, including red alder, tulip poplar, red oak, and big-leaf maple, was chosen for the exhibit. Zoo staff added 700 more trees: tulip poplar, catalpa, Kentucky coffee tree, empress tree, paulownia, beech, ash, yellowwood, and striped bark maple along with 21 species of bamboo ranging from dwarf to timber. In all, the elephants' new home includes 12,000 trees of some 150 species.

A new wetlands exhibit at the National Zoo also incorporates naturalistic plantings. Giant and fragrant water lilies, water hyacinths, wild rice, and big-leaved arrowheads share the marsh with red-eared sliders, black-crowned night herons, and trumpeter swans. Exhibits sign identify wetland birds and turtles as well as plants in an effort to educate the public about whole environments.

The Arizona-Sonora Desert Museum in Tucson has created a living museum using the desert as background. On 17 acres within the Sonora's pristine 187 acres is a collection of zoological, botanical, and geological treasures. Visitors wander through saguaro cacti and other native desert plants to view exhibits that simulate desert habitats. Mark Dimmitt, curator of the museum's plant department, observes: "Animals are surrounded by native plants and geological formations here—visitors become immersed in the life of the desert."

Since zoo horticulture is a relatively new area, there are no handy reference books with tips for making both plants and animals happy. Horticulturists spend a lot of time seeking advice—from zoologists, keepers, naturalists, and fellow zoo horticulturists, but in the end, it usually comes down to trial and error. "Animals are individuals, just like people, with different likes and dislikes," Hider says. "The plants gorillas ignore at one zoo could be the same plants the gorillas pull up and play with at another zoo." A gorilla troop past bearing young are not as interested in the plant material around them, but young gorillas can play "holy hell with plants," he says.

Agrees Tim: "In some exhibits you are resigned to replacing the plants because you know they won't last very long. You just keep trying new combinations—our red-twig dogwood has survived quite well with the snow monkeys. I try to keep one step ahead of the animals. Most of the time I feel they're winning! But I feel very strongly that we're doing our bit toward the conservation of both animals and plants."

She Maloney, supervisor of grounds and facilities at Seattle's Woodland Park Zoo, says zoo horticulture is "hard work and a lot of stress, but it provides a wonderful opportunity to experiment, take chances, and try new barriers." At Woodland Park, she says, a combination of creative people and officials willing to try new ideas has made their horticultural endeavors a success. "We're lucky," says Maloney. "So far, everything has worked."

—Mary Beth Wiesner
Beware of Your Air

If your foliage has been speckled, your blossoms bleached, or your spinach shot with yellow, the explanation could be too little iron in the soil under your feet. On the other hand, it could also be too much ozone in the air over your head.

“Ozone damage is not something you hear a lot about,” says Julia Kirtland of the Institute of Ecosystem Studies in Millbrook, New York, which for the last two seasons has featured educational displays relating to the pollutant's effect on plants.

Most people associate ozone with that occurring in the earth's stratosphere, the depletion of which is linked to the greenhouse effect and increased radiation exposure. But it is ozone building up lower in the earth's atmosphere that damages plants.

Even though many gardeners may be unaware of this threat, researchers have been looking into it since the late 1950s, said Robert Kohut of the Boyce Thompson Institute for Plant Research at Cornell University. “Scientists in Southern California realized that as the number of cars increased, they began to see strange lesions on plant foliage.”

Ozone is formed when car exhaust and other hydrocarbons react with sunlight. While there are a number of pollutants that damage plants, 90 percent of American crops killed by pollutants succumb to ozone and sulfur dioxide. And of the two, ozone is about 10 times more toxic, according to Edward H. Lee, a plant physiologist with the Agricultural Research Service of the U.S. Department of Agriculture.

Sensitivity Varies

Last summer, the Institute of Ecosystem Studies demonstrated the visible ravages of ozone with a display in which two varieties of the same plant were grown side by side, one unprotected and one in an ozone-free chamber. The previous summer, Millbrook staff had put together an exhibit that showed the differences in ozone-sensitivity of various fruit and vegetable cultivars.

Some plants are so sensitive to ozone that they are used as “indicator plants”: damage on tobacco plants, milkweed, blackberry, black cherry, sweet gum, and tulip poplar means that damage to other plants in a given area can possibly also be chalked up to ozone. Among other very sensitive plants, showing damage after a couple of hours exposure at an ozone concentration of .1 parts per million, are spinach, muskmelons, oats, pinto beans, white pine, potatoes, and tomatoes. Somewhat more tolerant, showing some damage after one to two hours exposure at .2 parts per million, are begonias, onions, chrysanthemums, dogwood, sweet corn, wheat, and lima beans. Those able to tolerate exposure as high as .35 parts per million for an hour or two are zinnias, radishes, poinsettias, black walnuts, strawberries, and carrots. But there is also variation among cultivars of these groups.

Unfortunately, Kohut said, there has been little systematic research aimed at breeding ozone-resistant plants. “If a plant is bred in a high-ozone locale, that may incidentally screen out ozone-sensitive plants,” he said. “We may see that it’s resistant to pathogens, but we don’t understand the link.”

Ozone does its dirty work by destroying the chloroplasts that make chlorophyll, which plants need to make food. But it can also wreak invisible havoc, weakening cell walls so that vital nutrients leak out, or causing the plant to age rapidly. The stress it creates raises the sugar content of leaves so that they are more appealing to insect pests, says Lee.

Kohut says visible damage occurs on three levels. At low-level exposure, the upper level of the leaf looks stippled, while there is no apparent change on the undersurface. At the second level, larger flecks indicate the death of tissue; small lesions begin to coalesce. The third stage is what he called “serious bifacial necrosis.” Damage can be seen on both sides of the leaf, and foliage ages rapidly so that fall colors appear prematurely.

Pockets of Pollution

The most widespread concentrations of ozone occur in urban and industrial areas: the Northeast, Southeast, upper Midwest, Southern California. But ozone can easily travel to more rural areas, as is the case in Millbrook, which is 80 miles north of Manhattan. And there are also odd little pockets of pollution throughout the country. For instance, Kohut said ozone is high in mountainous areas such as Denver, Salt Lake City, and portions of the Adirondacks, where air masses can't circulate freely.

The Agricultural Research Service wants to nip ozone before it gets to the bud: they estimate that cutting ozone by 25 percent would save farmers well over a billion dollars a year. They have found that drenching plants with a growth regulator, ethyleneurea, seems to protect them against acute ozone exposure, but they're still not sure that the treatment will be effective in the field.

Since agricultural research results usually have to trickle down to home gardeners, they will have to glean much of their own information about ozone damage to ornamentals and many edibles through trial and error. If you know or suspect that you live in a high-pollution area, you may want to add ozone-resistance to the list of virtues for which you evaluate your plants next season.
Foliage as Filters

Chrysantheums and space exploration may not seem to have much in common. But studies by the National Aeronautics and Space Administration (NASA) show that mums and other plants can remove up to 80 percent of several harmful gases commonly found in modern buildings.

In response to the study, the Associated Landscape Contractors of America has founded the Foliage for Clean Air Council (FCAC). The NASA studies were conducted under laboratory conditions as the agency sought ways to keep air clean for long periods in the closed conditions faced by astronauts. The FCAC plans to conduct follow-up studies in real office buildings.

Among the pollutants being inhaled by office workers are formaldehyde and benzene fumes released from building materials, furniture, and carpeting; ozone released from photocopiers; radon; secondhand smoke; and fumes from cleaning solvents.

We're not safe at home, either. According to the U.S. National Research Council, a typical energy efficient house— with one complete air change every five hours— contains 240 micrograms of formaldehyde per cubic meter; 1,150 micrograms per cubic meter are released every 24 hours.

One of the most efficient plants for removing formaldehyde from the air is mother-in-law's tongue (Sansevieria trifasciata). An average size plant can remove about 30,000 micrograms of formaldehyde per 24 hours. Two plants would adequately cleanse the air in a room 10 feet by 15 feet by 8 feet (about 34 cubic meters). Several pots of Philodendrons, golden pothos, or spider plants (Chlorophytum comosum) would remove the same amounts of formaldehyde.

Other efficient air-filtering plants include Spathiphyllum, Dracaena deremensis 'Warneckii', Dracaena marginata, chrysantheum, and, should you choose to bring it indoors, the gerbera daisy.

Look! Up in the Stratosphere!

As if worrying about the ozone in the atmosphere weren't enough, a U.S. Department of Agriculture scientist says that depletion of stratospheric ozone is also posing a hazard to plant life.

Dr. Autar Mattoo, research leader at the Plant Molecular Laboratory of the USDA's Agricultural Research Service in Beltsville, Maryland, says that ultraviolet radiation from the sun that is normally filtered out by high-level ozone can rapidly degrade a plant protein called 32kDa that is vital in photosynthesis. The protein is broken down, plants produce more to maintain the balance they need for photosynthesis, but they have less energy for growth, Mattoo says. So far, this effect has been observed in artificial laboratory conditions in which duckweed, an aquatic plant, was exposed to different wavelengths of light. Those in the ultraviolet range caused the most damage to the protein.

Some plants are resistant to ultraviolet damage, Mattoo noted. If researchers can learn how such plants protect themselves, they may be able to use those traits to protect more vulnerable plants.

Stratospheric ozone is thought to be thinning due to the use of chlorofluorocarbons, which have been widely used as refrigerants, aerosol propellants, and solvents, but are increasingly being regulated or outlawed.

The Methane Menace

We may be contributing to the greenhouse effect every time we add fertilizer to the soil, according to a Massachusetts study. Although the major blame for global warming is laid to carbon dioxide, up to 20 percent of the phenomenon may be caused by methane, a gas produced by sources that range from bogs and marshes to the intestines of cows. Much of this methane never reaches the atmosphere because it is consumed by soil microorganisms. But these microbes prefer to dine on nitrogen when it's available. Industry is feeding them more nitrogen through acid rain; gardeners and farmers are dishing it out in fertilizers. Atmospheric methane has approximately doubled in the past two centuries.

When four scientists—Paul Steudler, R. D. Bowden, and J. M. Mellilo of the Marine Biological Laboratory at Woods Hole, Massachusetts, and J. D. Aber of the University of New Hampshire—applied ammonium nitrate to stands of trees in Harvard Forest, they found that methane consumption in the most highly fertilized plots dropped by 33 percent over plots left unfertilized.

The researchers attached a lot of caveats to their findings: it's hard to say what the six-month study might indicate in global terms, and the amount of fertilizer used was more than twice as heavy as a forester might use on a stand of trees. "I don't think the amount used by the average gardener would have a measurable effect," said Bowden.

The findings don't imply that you should switch from chemical to organic fertilizers, he noted. "It doesn't matter how the nitrogen gets there. If there is too much of it, it will alter the microdynamics of the soil."

Don't Blame Bossy

Methane may contribute to the greenhouse effect, but cattle aren't contributing much of that methane, says an animal scientist with the Texas Agricultural Experiment Station.

Some environmentalists have claimed that gas from the digestive tracts of cows and other ruminants produce as much as 15 percent of the world's atmospheric methane gas. Thus we can protect our globe by eating less beef, they argue.

But Dr. Floyd Byers claims that U.S. beef cattle produce less than one percent of the total methane gas that reaches the atmosphere each year. The fossil fuel used to drive a vehicle six miles each way to buy a quarter-pound hamburger for lunch has five times as much potential impact on global warming, through the carbon dioxide it produces, as does the hamburger itself, through the methane it produced when it was still on the hoof, Byers estimates.

Ironically, reduced beef consumption may lead to other environmental problems. People are forsaking beef for seafood, and a Vermont newspaper, the White River Valley Herald, recently reported that every species of fish being used for food is already being fished at or above its capacity to replace itself.
Dangerous Advice

I must write to warn you of the very dangerous advice about electric fence construction given in the September "Gardener’s Q&A" section!

I quote: "The electricity can be supplied by a solar collector (backed up by a battery), an electrical socket, or by a battery alone." No mention is made of the absolute necessity of using an electric fence charger to modify regular 110-volt household current delivered by an electrical socket. The unmodified 110-volt current can be fatal.

L. G. McKeever
Orinda, California

One should NOT attempt to build a deer fence without a charger. Although electricity can be supplied by a 110-volt AC household current, a fence charger (or energizer) must be used to regulate the electricity. Chargers increase the voltage but decrease the duration of the charge to mere thousandths of a second, so that a person or animal coming in contact with it receives a shock sensation but is not "frozen" to the wire and possibly electrocuted. These are often included in the wiring kits, but they can be purchased at agricultural co-op stores or hardware stores.

Plea for Pleiones

While I agree with your September article urging gardeners to avoid wild-collected bulbs, I do not feel that the Pleiones should be included under a blanket condemnation. I have grown Pleiones for about 10 years and can assure you that none are wild-collected. My original stock was obtained as excess from the arboretum at the University of California at Berkeley.

Most of the choice plants of Pleiones are named cultivars that can only be produced by clonal propagation. There is a continuing program of hybridization in England; new cultivars are also being offered in New Zealand.

We are indebted for much of this work to Philip Cribb and Ian Butterfield, who recently wrote a monograph, *Genus Pleione*, available from Timber Press in Portland. They did collect Pleiones in the wild in China some years ago, and have introduced several previously unavailable species. Like any respectable plant hunters, I feel sure that they exercised due caution in their collections. Without collections of this nature, our gardens would be barren indeed.

In other respects, Pleiones seem to be outcasts of the orchid world. Growers of the common warm-climate orchids look on them with disdain. I have yet to find a source in the United States and I have been in contact with more than 100 growers. I find this most disappointing as Pleiones seem well-adapted to Zone 7 and milder gardens and do well as house plants. Along with several friends, I am currently engaged in efforts to import some of the new cultivars from England. Many of these are extremely colorful and should be grand additions to our gardens once stocks have been built up.

I have been retailing Pleiones in the Northwest for the last five years. They are very popular at garden club plant sales and increasingly so with garden centers. Given the right situation, they increase fairly rapidly. I have found them hardy to at least 8°F in my yard. I currently grow three cultivars and three species. I would very much like to hear from other growers.

Richard Cavender
15920 S.W. Oberst Lane
Sherwood, Oregon 97140

Faith Campbell of the National Resources Defense Council said that at the October meeting of the Convention on International Trade in Endangered Species of Wild Flora and Fauna (CITES), wild collecting of Pleiones was found to be a continuing problem. "As recently as 1985, Japan imported at least 250,000 million Pleiones from Taiwan," she said. Although Japan has begun to propagate some other terrestrial orchids that were once wild-collected, it is believed they are still trading in collected Pleiones. But she added: "We are sure that there are people out there who are propagating them. I would encourage these growers to put the word 'propagated' on their labels."

Seed Suggestions

The Society could secure a better response to their Seed Program if they made a request in each News Edition. Many members are able to collect seeds almost every month of the year. In my own garden and greenhouses, many plants are either just beginning to flower or emerging from summer dormancy with flowering in late December or early January. If the Society can accept seed at any time, it would keep members interested in collecting seed, and save labor required at your end to prepare the list.

You should also indicate more clearly what is or is not desired. I have been told that spores are acceptable, but that "noxious weeds" and endangered species are not.

What is a noxious weed? I have spent several years trying to eradicate *Oenothera hookeri* that I deliberately planted. That to me is a noxious weed, but perhaps to you a prized plant. And I strongly believe that endangered species should be sought, provided they are not collected in the wild. All horticultural societies should encourage such donations. That is the only way we have a chance of saving our rapidly diminishing flora.

What is the minimum amount of seed acceptable? I was told it was not worth offering seed if 250 to 500 packets of a plant were not available. Assuming that many might donate identical seeds that could be combined into one lot is absurd; earlier this year I sent *Annona cherimola* and *Massonia pustulata* (large form) seeds and seriously doubt if anyone else has.

Finally, why not an article on how to prepare seeds? Not all seeds just "pop out" to be collected. I have given up trying to secure large quantities of *Leycesteria, Opuntia,* and *Zantedeschia* species. Even *Acanthostachys* has created a challenge. If you offered procedures for cleaning these and similar seeds, then perhaps the selection would be increased.

Leonard H. Corbett-Grant
Napa, California
Yes, we probably should remind members more frequently of this special benefit. We do accept seed any time of year, if it misses the Seed Program deadline, it will be distributed during the next year's program.

We are well aware that one gardener's weed is another's treasure; what self-souls obliviously in one location may sprout grudgingly in another. We try to avoid accepting seed of plants that create an environmental hazard, such as the Lythrum salicaria that somehow sprouted in our 1989 catalog and was then withdrawn from the program.

We cannot accept seed of endangered plants from private individuals, but will accept seed of such plants from botanical gardens and nurseries known to propagate these plants on their premises.

We do accept and distribute small amounts of seed. However, we usually do not list this seed in our catalog. It's frustrating for us and our members to get many requests for seed that was gone the first weeks of the program; not surprisingly, the rarer it is, the more our members want it. If it would make less than 50 packets, we either keep it until the next year in hopes that we will get more or, distribute it as a "thank you" to members who make a large contribution with their seed request.

We hope that members enjoyed Elisabeth Sheldon's article on collecting seed in our October magazine. As it points out, seed differs greatly in how and when it can be collected. If you would like more detailed information on obtaining specific types of seed, our Gardener's Information Service may be able to help, or you might want to ask for ideas from other members through Members' Forum.

Vinegar and pH (cont.)

I found a very confused discussion of pH in the November issue. To clarify: pH is the negative logarithm of the concentration of hydrogen ions. For any increase in the concentration of hydrogen ions, one would see a decrease in the pH. While it's true that water can dissociate to furnish positive hydrogen ions, for every hydrogen ion produced there would also be a negative OH ion that would quickly react with one of the excess hydrogen ions to form water. So any contribution of hydrogen ions by water added to vinegar would be short-lived.

What adding the water actually does is reduce the concentration of hydrogen ions by dilution, thereby increasing the pH, analogous to what you do when making a fertilizer solution.

Charles W. Everson
Shepherdsville, Kentucky

You are right. We were wrong. The result you get by mixing vinegar and water involves dilution, not a chemical reaction. Our explanation to a reader who was afraid that municipal water was too alkaline for his bonsai, and wanted to know if it was safe to address the problem by watering them with a vinegar solution, became particularly confusing because mixing and using the solution raises the vinegar's pH, lowers the water's pH, and lowers the soil's pH. Apparently, we had some readers going up and down. Thanks to Elisabeth Belfer of New York City and Nickolas Nickou of Branford, Connecticut, for also pointing out that vinegar is "acetic" acid. As Dr. Nickou observed, the common name for "acetic" acid would probably have to be "reclusive acid."

The next reader gives us reason to believe it wasn't pH we should have been discussing in the first place:

William Wyfile Jr.'s November letter about using vinegar to lower irrigation water pH noted that "the subject of pH is seldom mentioned, much less emphasized, in the literature." Gardening literature tends to avoid any in-depth discussion of horticultural chemistry.

Actually, irrigation water pH by itself is not the best indicator of whether water will cause the soil pH to increase. Two water supplies, both with pH above 7, may have different alkalinities. Alkalinity is measured by adding acid to a water sample until the pH drops to 4.5; the result is reported in units of milligrams of calcium carbonate per liter.

Container soil pH often rises when the water alkalinity is high. The pH increase is caused by the bicarbonate in the water. Commercial container plant growers often add concentrated phosphoric, nitric, or sulfuric acid to lower the alkalinity to about 100 mg per liter. Home gardeners who use municipal water might be able to find out its alkalinity from their water treatment plant.

David R. Hershey
University of Maryland

Correction

In transcribing directions for building a misting chamber for cuttings in our November issue, we misread 4' as 4": the plant lights required for the chamber need to be four feet long. Thanks to an alert reader at the University of Illinois for catching the error, and we apologize to any readers who may have been fruitlessly searching for pygmy plant lights.
New EPA Rules Could Hit Home

Until now, home gardeners have not been affected by federal rules intended to protect endangered plants and animals from pesticides.

But new regulations being proposed by the Endangered Species Protection Program of the U.S. Environmental Protection Agency (EPA) are expected to set limits on at least a few outdoor home and garden pesticides, depending on where they are being used. How gardeners will be informed of these rules, and how they will be policed, is still unclear.

Originally, the EPA exempted home pesticide users from its regulations under the assumption that such products—used in limited amounts in areas generally devoid of wildlife—would have no impact on endangered species. But now, in response to public pressure from environmentalists, the agency is developing a new program geared toward protecting each endangered species and its habitat from any pesticide threat. At the same time, the nursery trade is monitoring the proposed program in an effort to protect their interests and ensure reasonable implementation of the plan.

The impact on home use should be minimal, according to the EPA, and not all home gardeners will be affected—only those who live in areas where use of a chemical has been found to harm endangered species or where the Fish and Wildlife Service (FWS) has provided specific measures to reduce incidental exposure. FWS is the major federal agency responsible for administering the amended Endangered Species Act of 1973 for most species. This act provides protection for animal and plant species that are threatened or in danger of becoming extinct and conserves the ecosystems they depend upon.

Label Them Careless

A recent University of California study shows that pesticides used in and around the home don't command a great deal of respect. When UC-Davis researchers James Grieshop and Martha Stiles surveyed 415 home pesticide users in the Sacramento area, one out of four said they had suffered illness after exposure to pesticides. Yet two out of five don't read the product labels, fewer than half wear protective clothing when applying pesticides, and one in five sometimes apply stronger-than-recommended dosages.

This casual attitude toward pesticide hazards has serious health implications. Pesticide poisonings rank third among all non-drug poisonings at the UC Medical Center in Sacramento. A 1987 study by the National Cancer Institute revealed that children living in households where home and garden pesticides are used are up to six times more likely to develop some form of childhood leukemia.

Experience is not a good teacher in this case. Veteran pesticide users, perceiving the chemicals to be safe, were the most likely to take fewer precautions. And even though individuals respected the pesticides enough to wear protective clothing when applying them, they were the most likely to mix doses that exceeded the label instructions.

Nurseries and garden centers are the primary sources of information for pesticide use, followed by pesticide packages and labels. But labels are the only readily available sources of information after purchase.

The researchers think product labels could do more to underscore pesticide risks. "Labels appear not to be sufficiently strong in their warnings and recommendations," says Grieshop. "Typically, labels warn or caution users to avoid chemical contact to the eyes, skin, and clothing and to avoid breathing the substance, but they seldom include explicit ways to avoid exposure, such as wearing gloves, long sleeves, goggles, masks and washing up after use."

Labels also fail to give adequate or appropriate disposal information. Disposing pesticide containers in the household garbage is prohibited by California law, but most labels instruct users simply to "dispose of properly" or to dump the unused portion and throw the container in the trash.

Better labeling may help but it's not likely to solve the pesticide safety problem. 38 percent of the individuals surveyed never read the labels at all.

Four Steps

The new program will involve four steps:

1. The EPA will gather information on endangered species, focusing first on those with the most immediate need for protection. Then it will determine which pesticides their habitats may be exposed to.

2. It will determine whether pesticides being used in those areas "may affect" the species.

3. If the highest application rate shown on the pesticide label poses a problem, the EPA will determine the lowest level that may affect the species and request a consultation with the Fish and Wildlife Service. FWS will respond with a biological opinion indicating whether or not the species is in jeopardy from the pesticide use. Not all pesticides that EPA determines "may affect" a listed species will necessarily jeopardize them.

4. If the species is in jeopardy, the agencies will develop habitat maps and descriptions and issue bulletins for affected counties showing the geographic areas of concern. The bulletins will be updated annually.

Public participation will be encouraged during key steps of this process. Pesticide users may submit any data or information they find relevant, and request amendments to pesticide restrictions. EPA officials say...
they are looking for reasonable changes that will protect wildlife while minimizing limitations on pesticide use: for instance, changes in application methods or timing of application could significantly reduce exposure levels in many cases.

According to EPA statistics, five to ten percent of American pesticide use occurs in the home or garden. Seventy to eighty percent of that involves indoor pesticides, which are not affected by the current proposal. However, a surprising amount of poison is concentrated in and around the average home: the May/June issue of Horrorsmith magazine estimates that suburban homeowners use more pesticides per acre than farmers use on their fields.

Label Changes

In cases where changes in pesticide use are found necessary, manufacturers will have to revise labels to instruct users to follow information in county bulletins. However, labels on affected products will not list the counties in which limitations on pesticide use apply. It will be up to the individual user to obtain the county bulletin and comply with the use limitations if there are any. If not, the bulletin will tell users to follow label directions and will provide general information about endangered species. Current EPA data indicates that restrictions could affect 900 of the nation’s 4,300 counties

Bulletins may be distributed through training and certification programs within the states and the County Agricultural Extension Service. Other suggested outlets include pesticide dealers and distributors, Soil Conservation Service field offices, Fish and Wildlife Service field offices, EPA offices, and the offices of state regulatory agencies.

The proposed generic label statement and bulletins may not be the most effective communication tool, the EPA admits. Alternatives will be explored during pilot programs in several states.

Some states already have similar, or even stricter, programs, and at least 17 have indicated they may start pilot programs this year to evaluate whether the federal program is feasible and to find the best way of distributing information and gaining cooperation. States may suggest innovative ways of reducing the burden on pesticide users.

The new regulations should be in place by January 1991. But the EPA will continue to look at new biological opinions, new pesticides or new uses for old ones, and to assess the economic impact of the program on users such as nurserymen and farmers.

Samaritan from Hamden

Bill Liddell didn’t set out to be a philanthropist, he insists. He just had a lot of extra vegetables to get rid of—so far, about 50 tons worth—all of which he has given to Connecticut’s homeless and hungry over the past five seasons. Liddell, who lives in Hamden, Connecticut, was a longtime employee of Associated Seed Growers of New Haven. Now owned by Upjohn, it is described by Liddell as the biggest vegetable seed company in the world for commercial growers, and he was its “word man,” working in advertising, public relations, and as a field representative.

He had gardened as a hobby ever since he was a student at Yale. “I liked to see what I was writing about, and it was cheaper than golf or owning a boat,” he explains. His three-quarters of an acre always yielded enough to can, pickle, and freeze a healthy quantity. Then five years ago he retired, “and at one point I realized I had more than I needed.” Like other people with something to get rid of, it occurred to him to donate the excess to the poor. But his gift was far more valuable than worn out shoes.

Soup kitchens get their name from the fact that they rarely have fresh produce available. Hence they serve bread, canned goods, and soups. “Most of what the food banks get is distressed merchandise from wholesalers, or stuff that’s been culled over or trimmed off by produce buyers who can write it off for a tax advantage. There is a crying need for fresh vegetables for these people,” Liddell says. The first year he gave the Connecticut Food Bank 7,000 pounds of produce. Each year he’s increased that; in 1988 it was 28,000 pounds. He didn’t have the 1989 total by the January News Edition deadline: his methods let him grow from February well into December.

Liddell practices intensive gardening: planting rows of beans between his tomatoes; starting most crops in cold frames or on tables under shop lights in his basement to give them a headstart; getting three different cabbages out of some areas each season. As soon as the mustard is worn out in mid-June, in go the beans; when they’re gone in mid-August it’s time for broccoli, collards, and kale. He uses biological warfare against pests as long as it works, but isn’t averse to a pinch of diazinon to discourage the cabbage maggots.

“Gardening without chemicals is like riding a unicycle,” he’s fond of saying. “It’s a neat trick if you can do it, but it’s a hell of a way to get to New York City.”

He grows most every vegetable except potatoes, onions, and carrots; “I’m not efficient enough for those,” he says. He recruited volunteers from two local churches to help him with garden maintenance, and they now grow all of the peppers and cucumbers for the project.

Workers at the soup kitchens that benefit from Liddell’s largesse emphasize that it’s the quality of his produce that makes it so valuable: a tomato or two doesn’t go far when there are hundreds of mouths to feed.

Liddell advises those who would like to follow in his footsteps—and he hopes there will be many—to contact area agencies first to see what their needs are. It’s important to know if the food bank has facilities to store vegetables that spoil quickly. You don’t want to be a burden to the very people you want to help, he noted.

Chicago’s Helping Hands

Ten Chicago area soup kitchens are beneficiaries of a partnership between Allstate Insurance employees and the Chicago Botanic Garden. Cliff Zenor, coordinator of the botanic garden’s Gardening Resources on Wheels program, advised the 120 employees about what to grow, designed the 150 by 50 foot garden on Allstate grounds, and offers suggestions on pest control. The soil is adjacent to a freeway, so Zenor tests the soil once a year for lead, according to the Chicago Horticultural Society’s Garden Talk.

The employees broke the ground, improved the soil; built a fence, underground irrigation system and tool shed; and bought and planted all the seeds and seedlings. One hundred percent of their tomatoes, green peppers, green beans, onions, potatoes, squash, zucchini, carrots, and beets goes to charity.

We would like to make this column a regular feature! Tell us about people you know who are using horticulture to “make a difference.”
Charleston Gardens' Trees Toppled by Hugo

Southern California botanical gardens were barely touched by the October 17 earthquake, but several in and around Charleston, South Carolina, were battered by Hurricane Hugo a month earlier.

Charleston's Cypress Gardens was damaged so severely that it will probably be closed all next season, said manager Cathy Townsend.

Trees over half of the 172-acre garden, which includes camellias, azaleas, and dogwoods in addition to its huge cypresses, were knocked down or mortally wounded. The main building, a romantic pink stucco structure built around 1890 by a wine merchant who owned the property, was completely destroyed.

Silver Lining

Townsend said there is a silver lining to the disaster: the staff wanted to remove some trees so their azaleas would receive more sun, but they feared that felling the trees would damage the shrubs. Hugo had no such qualms. "Most of the azaleas should come back from their roots once we get the trees off of them, and we should get better bloom," she said.

Of 79 trees in the garden's picnic area, only four remain. "And no one likes to picnic in the sun in a Charleston summer," observed Townsend. "Our main area will look very different. We'll have a lot more land to plant, and maybe we'll put in roses and other things we haven't been able to grow before."

Ninety-five percent of the pines in the surrounding forest were lost, but clean-up was hindered by the garden's location far from a main road.

Townsend said they were considering the solution used by nearby Magnolia Plantation and Gardens, which hired a helicopter to remove larger trees.

The Magnolia garden, hit by winds up to 130 miles per hour, fared somewhat better and was able to reopen by mid-October. It lost 70 percent of its pines, but only five percent of the live oaks was prevalent in the area. Species such as cypress and tupelo growing in the standing water of the garden's new Audubon Swamp Garden seemed impervious to uprooting, officials said.

Ross Randall of Charleston's Middleton Place, which contains the oldest landscaped gardens in the country, said in late October that two-thirds of their gardens had reopened, but that the rest of the 70 acres were still being cleared of debris. The garden's most popular attractions—its camellias, giant oak, lake, and butterfly statue—were all unscathed, said Randall.

Tree experts from Colonial Williamsburg helped them stabilize and save some live oaks that were damaged, and many other volunteers have helped with clean-up. Randall said a fund-drive has been started to help with the restoration, and that more volunteers with botanical expertise will be needed after clean-up is complete.

At Brookgreen Gardens in Murrells Inlet, known for its outdoor sculpture, the artworks were undamaged, but the limbs of live oaks were broken and many smaller trees and shrubs were uprooted. Many of the latter were cut back and replanted and have a good chance for survival, said director Gurdon L. Tarbox Jr.

Tarbox said several maintenance and support facilities were destroyed but no public buildings were seriously damaged and the gardens were able to reopen one week after the storm. Damage to the surrounding forest area was still being assessed.

An estimated 86 percent of the state's forest area, or about four million acres, was severely damaged. It was a blow both to natural areas, such as the Francis Marion National Forest, and to the forestry business, the state's third-largest industry.

Nurserymen were hurt, too, by power outages, damage to structures, uprooting of field-grown plants, and loss of large trees that shaded tender plants.

Escape from the Quake

In California, even the botanical garden closest to the epicenter of the October earthquake escaped damage. "We're on good, solid turf," said Brett Hall, manager of the Arboretum of the University of California at Santa Cruz.

"We had a few tools thrown around and a few plants were knocked off the shelves. That was about it. "Officials at Strybing Arboretum in Golden Gate Park and the University of California Botanical Garden at Berkeley reported only minor damage that did not involve plants or important structures.
If the AHS Seed Catalog arrives, can spring be far behind?

Pity the poor gardeners who haven’t yet discovered the wonderful world of seed: too difficult, takes up too much room, they protest. They dream the winter away, their fingernails pitifully free of soil, waiting for the ground to warm and their perennials to arrive in the mail. Come April or so, they’ll go deeply into debt at their local nursery.

No such fate for participants in our Seed Program. Clean up those flats! Invest in a new heating cable! Check the vermiculite supply! You can have seedlings to pamper in a few weeks. We have easy seed and exotic seed. You can fill a greenhouse with cacti or start an herb garden on your kitchen windowsill. Astound the neighbors with a bountiful vegetable garden, or cool your apartment house rooftop with trees and vines.

But whatever you do, make your selections today. Horticultural hope may spring eternal, but he or she who hesitates is lost; some of our most popular selections disappear the first week. Don’t just sit there lost in reverie while fellow AHSers get the jump on you.
How to order

Although we have a small mountain of many of the species listed here, in some cases the donors—other members, seed companies, and botanical gardens—were able to provide only a small quantity. To increase the chances that you'll get the seed your heart desires, fill out your order form and mail it now. Whenever possible, we will send you your first-choice selections. But we ask that you list alternate selections that we can send in case any of your first choices are depleted. Our staff and volunteers who fill your order will not choose substitutions for you; only you know what is best for your own garden.

Once you've decided what you want to order, fill out the order form on page 12.

After sending us your order, it is important that you keep this catalog: you will need it to identify the seed you receive. All the seed packets distributed through the Society's annual Seed Program are marked with only the master list numbers that appear in the catalog.

There is no cut-off date for orders this year. But the longer you delay in placing your order, the less likely it is that you will receive all your first choices and have them up, ready to adorn your landscape by spring.

As you complete the order form, we hope you will consider making a donation to help defray the cost of the Seed Program by including a voluntary contribution. This year, we are suggesting a minimum of $2 if you are ordering 10 packets of seed, and $3 if you are ordering 15 packets. By donating even more, you can help AHS expand and improve its Seed Program. All contributions to the American Horticultural Society are tax-deductible.

Supplementary list

Seed received too late to include in the catalog, but which we nevertheless want to make available to members, has been listed in a supplementary seed list that is available upon request. The supplementary list also includes seed we have in very limited quantities, so that we may be able to fill only a few requests. Growing plants from seed is always an adventure; if you feel truly daring, the supplemental list also includes a group of "mystery" seeds about which we could find little information other than the names. If you would like to receive the supplementary list, please request it by checking the appropriate box in the seed order form.

Seed Program 1991

We're hard pressed to name the number one reward of gardening, but ranking near the top has to be the feeling you get when you've raised a plant in such abundance that you have enough seed, cuttings, or divisions to share with your friends or neighbors. Start thinking now about sharing your 1990 bounty with the American Horticultural Society's nationwide community of gardeners. Although much of the seed in our catalog is donated by seed companies and botanical gardens, we also depend heavily on donations from members. We would like to see more Society members involved in both the give and take of this program. Particularly if you have any unusual or rare plants in your garden, we hope you will collect the seed and send it to us for the 1991 seed offerings so that it can be shared with American Horticultural Society members.

For information on the 1991 seed program, write to:

Seeds 1991
American Horticultural Society
7931 East Boulevard Drive
Alexandria, VA 22308

General Germination Instructions

The successful germination of seed requires three conditions. First, the seed must be viable; second, the seed must not be dormant; and third, the appropriate environmental conditions must be provided.

Seed viability depends on a number of factors, including growing conditions and storage conditions. Growing conditions are often beyond your control, but you can take simple steps to assure storage conditions that will maintain viability for a reasonable length of time: seeds should be stored in reasonably airtight containers and kept in a place where neither temperature nor humidity varies much.

Some seeds will need your coaxing to overcome dormancy. The procedures usually used to do this are scarification and stratification—sometimes both. These processes will be explained later in the directions. As you read the catalog, you will find at the end of each seed description a code indicating whether germination will require scarification and/or stratification. Those codes are explained by a chart that will appear several times throughout the catalog.

There are four environmental conditions that need to be controlled:

- **Water.** Once a seed takes up water, it must not be allowed to dry out or the seed is lost.

- **Temperature.** Most seed will germinate readily at about 70° F. If it is hot, if the temperature is provided by bottom heat from a heating cable (a small heating cable is relatively inexpensive). There is some seed that may germinate best at a lower temperature—about 55° F or 60° F—while other seed require a warmer temperature of about 80° F. These will also be indicated in our chart. Never, however, expose any seed to excessively hot or cold temperatures (below 50° F or above 85° F) after the seed has imbied water.

 Maintaining the optimum temperature will help assure that germination occurs as rapidly as possible; unnecessary delay of germination increases the likelihood of disease that will kill young seedlings or prevent their germination altogether.

- **A well-aerated growing medium.** For indoor planting, use a commercial potting mix composed of sphagnum peat, perlite, and/or vermiculite. Good results can also be obtained for many seed with milled sphagnum or perlite or vermiculite used alone. Do not use ordinary garden soil to germinate seed indoors; no matter how good its quality, it is very unlikely that it will provide adequate aeration when placed in a seed flat. Also, it is highly likely that garden soil is contaminated with organisms that can cause damage to seeds and seedlings. Whatever medium is chosen, it should be thoroughly moistened before being placed in the germinating flats. Make sure that flats have drainage holes.

- **The appropriate light level.** Some seed require light for germination and others are inhibited by light. These needs are also indicated in our chart.
Sowing the seed

The seed of many plants, particularly annuals, can be sown safely outdoors where the plant is to grow once the date of the last frost in your area has passed. But with all other plants, or to get an early start with these, you will want to sow seed indoors in seed flats. Those that will eventually be grown outdoors should be started about six to eight weeks before the last frost date.

It is important that the germination medium be disease-free at the outset. The best way to destroy organisms that can prevent germination is to pasteurize the medium. To do this, place a quantity of the moist (but not wet) medium in a tray to a depth of not more than two inches and heat it in an oven for 30 minutes at a temperature of 180°F. As an added precaution, the seed flat may also be drenched with a fungicide formulated to destroy damping-off organisms. This should be done 24 hours prior to sowing the seed.

After the moistened germination medium is put into the seed flat, mark the rows where the seed is to be sown. Most seed should be covered about one and one-half to two times its diameter. However, if the seed you are sowing is very small, there is no need to cover it with the medium; it is sufficient to press it lightly so that it makes contact with the soil. It will help to disperse such seed evenly in the row if you first mix the seed with about three or four times its volume of fine horticultural vermiculite (grade 2).

Avoid sowing seed with different germination times in the same flat. Otherwise, you may find it impossible to transplant the earlier seedlings without disturbing those that germinate later. For the same reason, you should avoid planting seed too close together. Close spacing also encourages disease.

Be sure to label the seed flats with the date and name of the seed sown. It’s frustrating to watch something sprout and wonder “What’s up?” And you’ll find that gathering information on the performance of your plants enhances the fun of gardening.

After sowing, water thoroughly with a fine mist spray until water begins to drain out the bottom of the seed flat. This ensures thorough wetting. Glass works well for covering the tray; it’s inexpensive, lets you see when seed has germinated, and a gentle tap will serve to “rewater” the seeds. But plastic or even damp newspaper (for those seeds that do not require light) will serve the purpose. Put the flat on a heating cable, or in any location of suitable temperature. Do not place the flat in the sun or under any strong light source, especially if you have covered it with glass. Excessive heat build-up will kill the embryos.

As soon as the young seedlings break the soil surface, remove the glass pane and place the seed flat in indirect lighting or in a well-lit location until ready for transplanting. If you are depending on bulbs to provide light, use fluorescent lighting.

About one week after germination you may begin fertilizing the seedlings with one-quarter strength soluble fertilizer. You may apply it with every watering. When the seedlings are three weeks old, the fertilizer can be increased to one-half strength.

Do not allow seedlings to become excessively dry, but don’t overwater either. The seedlings must be kept reasonably moist without being soaked. Too much water encourages disease; too little water causes poor growth.

Transplanting

Transplant the seedlings to individual pots as soon as two true leaves develop. The smaller the seedling are at transplanting the better they tolerate the shock of transplanting. If you allow the seedlings to become too large before transplanting this may contribute to the failure of the transplant.

Immediately before transplanting, thoroughly water the seed flat and let it drain for about an hour. This will help you to remove the seedlings from the flat more easily and will aid in reducing root injury. An ordinary kitchen fork makes a good transplanting tool. The tines of the fork will lift the seedling easily from the flat without contributing to excessive root damage.

After transplanting, water the transplant thoroughly and place it in a shaded location for about 24 hours. Following this, the transplants may be placed in normal growing conditions.

If the transplants are to grow outdoors they must first be hardened to the new environment. Hardening involves a gradual adjustment to outdoor temperature and light and is accomplished over a period of about three to four days. Beginning a week or 10 days before the hardening process is to be started, gradually reduce watering (but not to the point of allowing the plants to wilt) and stop fertilizing. Then begin the hardening process by moving the young transplants outdoors where they will not be exposed to direct sunlight. On the first day of hardening, the plants should be left outside for about four hours during the morning. Over the next two or three days the plants are left out for longer periods, gradually introducing them to more light until hardening is completed. After this treatment the transplants should be sufficiently acclimated so that they can adapt to permanent placement in the garden.

The seed of trees and shrubs can be handled the same as any other seed, following all the procedures for sowing the seed as outlined, but the young tree or shrub seedlings should be planted outdoors in a protected location for a year or two prior to setting them in their permanent location.

Breaking dormancy

Cold stratification. Seeds that require cold stratification before they are able to germinate should be sealed in a plastic bag with a small amount of moist (but not wet) sphagnum moss or peat moss. Tie the bag closed and place in a refrigerator at 38°F to 40°F for the appropriate time, which may be from one to four months. It is important that the sphagnum or peat not be too wet; otherwise the seed may rot.

Warm stratification. Some seed requires exposure to a period of warm temperatures before the cold stratification treatment begins. The seed is treated exactly as for cold stratification except that it is stored at a warm temperature of 70°F to 80°F for some period of time.

Scarification. Some seed will not germinate because of a hard seed coat and softening or breaking the seed coat is necessary to effect germination. A hard seed coat may be rubbed with sandpaper or a small file to alter it enough so that it can take up water. For some seed, a hot water soak can accomplish this. Soak the seed in five times its volume of hot water (180°F to 212°F) for 24 hours. The hot water is poured over the seed and allowed to cool.

On The Cover

The art on the cover of the 1990 Seed Catalog formerly graced the covers of The National Horticultural Magazine, the forerunner to American Horticulturist, during the late 1940s and early 1950s. The woodblock prints were designed by B. Y. Morrison, a Society founder, president, and editor of its magazine for 37 years. Twelve of these prints have been used to create two sets of notecards—perfect for gifts or greetings to fellow horticulturists. For information on purchasing the cards, see our February magazine.
Annuals

4. **Chrysanthemum carinatum.** Tri-color chrysanthemum. Height: 2 to 3 feet. Daisylike flowers. White petals are banded with red, orange, and yellow. L [3]

5. **Clarkia amoena.** Satin flower. Height: 3 feet. A spreading plant that prefers light soil. Flowers are pink to lavender with bright red centers. A,B,L

The letters in the following table provide germination information and requirements. For some seed, more than one germination technique may be used. For example, A,B indicates that the seed may be sown indoors or outdoors. Also, some seed require more than one treatment before germination can occur. Db, Eb indicates that a 3-month warm stratification treatment must precede a 60-day cold stratification treatment.

<table>
<thead>
<tr>
<th>Letter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>May be sown indoors in flats.</td>
</tr>
<tr>
<td>B</td>
<td>May be sown outdoors where they are to grow.</td>
</tr>
<tr>
<td>C</td>
<td>Sow indoors into pot to minimize transplant shock.</td>
</tr>
<tr>
<td>Da</td>
<td>Warm stratification of 2 months.</td>
</tr>
<tr>
<td>Db</td>
<td>Warm stratification of 3 months.</td>
</tr>
<tr>
<td>Dc</td>
<td>Warm stratification of 4 months.</td>
</tr>
<tr>
<td>Dd</td>
<td>Warm stratification of 5 months.</td>
</tr>
<tr>
<td>De</td>
<td>Warm stratification of 6 months.</td>
</tr>
<tr>
<td>Ea</td>
<td>Cold stratification of 30 days.</td>
</tr>
<tr>
<td>Eb</td>
<td>Cold stratification of 60 days.</td>
</tr>
<tr>
<td>Ec</td>
<td>Cold stratification of 90 days.</td>
</tr>
<tr>
<td>Ed</td>
<td>Cold stratification of 120 days.</td>
</tr>
<tr>
<td>F</td>
<td>Scarification.</td>
</tr>
<tr>
<td>G</td>
<td>Hot-water soak.</td>
</tr>
<tr>
<td>H</td>
<td>Light recommended for germination.</td>
</tr>
<tr>
<td>I</td>
<td>Dark recommended for germination.</td>
</tr>
<tr>
<td>J</td>
<td>Cool temperature required for germination (55° to 60°F).</td>
</tr>
<tr>
<td>K</td>
<td>Warm temperature required for germination (80°F).</td>
</tr>
<tr>
<td>L</td>
<td>Easy to germinate.</td>
</tr>
<tr>
<td>M</td>
<td>Difficult to germinate.</td>
</tr>
<tr>
<td>N</td>
<td>No reliable germination information.</td>
</tr>
<tr>
<td>O</td>
<td>Sow in fall.</td>
</tr>
</tbody>
</table>

8. **Delphinium spp.** Larkspur. Height: 3 feet. Flowers are dark and light blue in early summer. A,B,L [54]

9. **Dianthus armeria.** Sweet William. Height: 12 inches. Flowers are pink to lavender with bright red centers. A,B,L [15,56]

10. **Dolichos lablab.** Hyacinth bean. Tender perennial vine grown as an annual. Flowers pinkish purple, about 1 inch long. Fruit is a purple, flat pod, 2 inches long; seeds black or white. Ornamental member of the pea family; is edible. A,B,L [56]

11. **Eschscholzia californica.** California poppy. Height: 2 feet. Flowers range from deep orange to pale yellow, 2 inches across. Full sun. Blooms the first year, will reseed. A,B,L [24,25,57]

15. **Lagernaria siceraria.** Coriander gourd. Large, 30-foot vine producing small, brightly colored ornamental gourds. A,G [3]

16. **Lavatera trimestris 'Mont Blanc' and 'Silver Cup'.** Height: 3 feet. Mix of silky white flowers and salmon pink flowers with dark rose veins. Chalice-shaped, similar to hollyhocks. Excellent cut flowers. Summer. B [52]

17. **Lobelia erinus 'Rosamund'.** Height: 4 inches. Small dusky flowers; deep carmine red with white edges. Full sun or partial shade, good for edging or rock gardens. Blooms spring A,K (start indoors 10 to 12 weeks before transplanting outside after frost). [8]

18. **Malva sylvestris var. mauritiana.** Malv. Height: 3 feet. Biennial grown as an annual. Flowers in groups of two to six, petals deep rose purple with dark veins. Early spring to late summer. B,L

19. **Mirabilis jalapa.** Common four-o'clock. Height: 2 to 3 feet. Funnel-shaped flowers open about four o'clock in the afternoon. White, yellow, or red flowers about 2½ inches long. Can treat as an annual and sow seeds in the spring or lift roots in fall and store over winter inside. B,L [58]

21. **Nigella damascena.** Love-in-a-mist. Height: 18 to 24 inches. It gets its common name from the way the solitary blue or white flowers appear to nestle in the misty, fernlike foliage. The balloon-shaped seed pods can be used in dried arrangements. Reseeds. Difficult to transplant. B,L [56]

22. **Orthocarpus purpurascens.** Owl's clover. A strain of the snapdragon family with hairy, purplish stems bearing spikes of crimson or purple flowers that are tipped with white or yellow and purple markings. Native to southern Arizona and southern California. L

23. **Papaver rhoeas.** Flanders corn poppy. Height: 3 feet. Stems branching and wiry. Flowers are four-petaled and red to deep purple. A,L [3]

24. **Papaver spp.** Shirley poppy. A strain of the above species. B,L [60]

25. **Rudbeckia hirta 'Glorious Daisy'.** Height: 36 inches. Daisylike flowers, golden petals and brown centers. Blooms in summer and fall. Short-lived perennial grown as an annual. A,B,K [37,56]

27. **Scabiosa atropurpurea 'Giant Imperial'.** Pincushion flower. Height: 3 feet. Pincushion-shaped, 3-inch flowers in blue, white, rose, pink, crimson, lavender. A,B,L [8]

28. **Xeranthemum annuum.** Immortelle. Height: 2 to 3 feet. Flowers: 1½ inches; white, purple, violet, rose. Useful in arrangements both fresh-cut or dried as everlasting. A,B,L [3]

31. Acanthus mollis 'Nigra'. Same as above but with dark maroon, almost black flowers. [5]

32. Allium christophii. Dwarf species with tufts of finely cut leaves and soft blue and cream flowers. Repeats. Zone 3. Ea (takes 1 to 3 months to germinate; reducing night temperature is beneficial for germination) [19]

35. Anemone ranunculoides and Anemone nemorosa. Mix of windflowers. Height: 1/2 to 1 1/2 feet. Flowers are white. Spring. Zones 3 to 6. L (may take 5 to 8 weeks to germinate) [55]

36. Anemone patens. Pasque flower. Height: 6 to 8 inches. An early spring bloomer with violet flowers. Full sun or light shade; good for rock garden. Zone 6. L (may take 5 to 6 weeks to germinate) [13]

38. Aquilegia alpina. Alpine columbine. Height: 1 foot. Nodding, bright blue flowers in summer. Light shade; moist, well-drained soil. Zone 3. Ea (takes 1 to 3 months to germinate; reducing night temperature is beneficial for germination) [31, 34]

39. Aquilegia discolor. Height: 6 inches. Dwarf species with tufts of finely cut leaves and soft blue and cream flowers. Repeats. Zone 3. Ea (takes 1 to 3 months to germinate; reducing night temperature is beneficial for germination) [19]

40. Aquilegia flabellata 'Nana Alba'. Fan columbine. Height: 8 to 10 inches. Leaves are blue-green; flowers are white with short incurved spurs. Blooms late spring. Good for rock garden. Zone 5. Ea (takes 1 to 3 months to germinate; reducing night temperature is beneficial for germination) [19]

41. Aquilegia vulgaris. Granny's bonnets. Height: 3 feet. Flowers are blue-purple, white. May to July. Zone 4. Ea (germination takes 4 weeks) [3, 26]

46. Campsis radicans. Trumpet vine. Flowers are bright orange, trumpet-shaped and 3 inches long. Blooms in late summer. Zone 5. E [germinates in 30 days] [10]

50. Dianthus barbatus. Sweet William. Flowers are small, red, white, pink, and violet. Height varies with this mix. Zone 4. B, L [3, 14, 25, 58]

52. Dianthus plumarius. Cottage pink. Height: 16 inches. Mat-forming, narrow, gray leaves; small, fragrant flowers. Flowers are purplish and often fringed with rose, purple, or white. May and June. Zone 3. B, L [37]

53. Dictamnus albus. Gas plant. Height: 2 to 3 feet. White to pink flowers in summer. Plant, especially seed, is poisonous. Excellent for perennial border. Zone 4. E, J (germinates in 30 to 40 days) [13]

Save this catalog!

Seed packets are marked by catalog number only, so it will be your only means of identifying the seeds you have selected.

58. Fragaria vesca. European strawberry. Height: 8 to 12 inches. Used primarily as a ground cover, is everbearing with large white flowers and edible red fruit from June to late fall. Zone 5 to 6. A, L [3]

59. Gaillardia aristata. Common blanketflower. Height: 2 to 3 feet. Yellow flowers are yellow, daisylike, and bloom most of the summer. Thrives in dry soils, hot temperatures. Zone 4. A, B, L (germinates in 3 weeks) [3, 12]

62. Gladiolus gracilis. Height: 2½' to 6'. Cylindrical leaves up to 2½' long. Flowers fragrant, blue or pale pink. A tender perennial that must be planted in spring, lifted in fall, and stored inside overwinter in Northern areas. [42]

64. Hosta sieboldiana 'Frances Williams'. Height: 30 inches. Large, round, heavily textured blue leaves with gold border. Lilac flowers in summer. Shade. Zone 4. A, B, L [7, 21]

67. Iris pseudacorus. Yellow flag. Yellow-flowered iris with blue-green foliage. Can be grown in moist areas, bogs, and streams. Late spring. Zone 6. O

69. Lilium canadense. Canada lily. Height: 2 to 5 feet. Flowers are yellow to red, bloom in July. Zone 3. A, B, L [63]

70. Lunaria annua. Money plant. Height: 3 feet. Flowers are purple or white and fragrant. Fruit is silvery, papery, and coin-shaped. Biennial that will reseed. Useful for dried arrangements. B, L [2, 64]

71. Lychnis chalcedonica. Maltese cross. Height: 2 to 3 feet. Open-growing, branched plant with hairy leaves and stems. Flowers are scarlet; June to July. Zone 4. L [best germination rates at 68°F] [5, 61]

Save this catalog!

72. Morea polystachya. Height: 3 feet. Iris-like plant with three to four ribbed leaves. White-purple flowers, yellow blotches at the base of each flower. Zone 9. O [42]

75. Osmorhiza claytonii. Sweet jarvis or woolly cress. Height: 3 feet. Leaves up to 1 foot; small, white to yellow flowers in umbels. Fruit is round and up to an inch long. Zone 3. N [30]

76. Penstemon cyananthus. Wasatch penstemon. Height: 3 feet. Flowers are bright blue, about 1 inch long; appearing in dense spikes. Zone 3 to 4. L [8]

78. Potentilla arguta. Tall cinquefoil. Height: 3 feet tall. Flowers whitish cream, ½ inch across. Stems are erect and purplish. [61]

80. Salvia stenophyllum. Height: 2 feet. Leaves are sticky, aromatic, and about 2 inches long. Plant is topped with spikes of 1 inch, light blue flowers. A tender perennial. L [10]

83. Schizostylis coccinea 'Mrs. Hegarty'. Height: 1½ to 2½ feet. Narrow, evergreen leaves (plant does best in mild-wintered climates). 'Mrs. Hegarty' is a runner with tall wine red flowers. Zone 9. (If planted in spring, lift in fall, and overwinter in Southern areas) [35]

84. Senecio fendleri. Groundsel. Height: 18 to 28 inches. Stems are thick with toothed basal leaves. Yellow flowers, yellow petals. [55]

88. Tigridea pavonia. Mexican shell flower. Height: 2 feet. Foliage is sword-shaped. Flowers are 3 to 6 inches across and a variety of colors. A tender cormous plant that will have to be lifted in fall and replanted in spring in the North. Zone 6. [21, 55]

89. Tulipa tarda. Tulip. Stem can grow up to 3 inches; leaves, 4 to 7 inches; and flowers, 2 inches. Buds erect, opening to a flat star shape. Red flowers. Zone 4. O [54]

90. Yucca aloifolia. Dagger plant. Height: 10 to 25 feet. Leaves are 2 to 3 feet long and 2 to 3 feet wide. Flower are white, about 4 inches long and appear on a panicle 2 feet high. Blooms in late summer. Zone 8. Seeds germinate slowly at 55°F. [51]
Wildflowers

Annuals

91. *Anagallis arvensis*. Scarlet pimpernel. Height: 4 to 12 inches. Tiny but profuse orange to scarlet flowers. Flowers close up during cloudy weather or in late afternoon. June to August. L [3]

95. *Clarkia unguiculata*. A dwarf, red-flowering form of the above. [3]

97. *Coreopsis lanceolata*. A dwarf, red-flowering variety of the above. [17]

105. *Matricaria recutita*. German chamomile. Height: 2 feet. White, daisylke flowers are used to make tea. B, L [3]

106. *Nemophila menziesii*. Baby blue eyes. Height: 30 inches. Blue, cup-shaped flowers with white centers. Leaves are tufted and form a rosette. Spring. L [57]

Perennials

111. *Achillea millefolium* 'Rubra'. A red-flowering form of the above. [3]

112. *Allium giganteum*. Giant onion. Height: 3 to 4 feet. Globose inflorescence on top of erect tall stalk is made up of many tiny lilac-pink flowers. Late spring to early summer. Zone 5. Seed sown in spring will bloom in two to three years. [13]

118. *Centaurea macrocephala*. Globe centaurea. Height: 4 feet. A large, coarse plant with yellow, thistlelike flowers in June and July. Specimen plant; flowers useful in dried arrangements. Zones 2 to 3. O [58]

119. *Coreopsis lanceolata*. Tickseed. Height: 1 to 3 feet. Stems are erect, leafy at base and leafless at top. Flowers are 2 to 3 inches across; bright yellow. Zone 3. A, B, H, L [12, 40, 57]

120. *Daucus carota*. Queen Anne's lace. A tap-rooted bienniel treated as a perennial. Small, white flowers borne on large, compound umbels from July to September. Used in dried flower arrangements. Graceful but can be invasive. Zone 3. O [37]

121. *Dyssoxia acerosa*. Height: 4 to 10 inches. A mosslike plant with threadlike, ½ inch long leaves. Flowers are daisylike, lemon yellow in color. N

122. *Echinacea purpurea*. Purple coneflower. Height: 2 to 3 feet. Pinkish purple flowers with dome centers, petals reflex slightly down. Blooms summer to fall. Zone 3. A (30 day cold stratification will improve germination) [12, 22, 61]

125. *Geum triflorum*. Prairie smoke. Height: 12 to 18 inches. Flowers in April through June. Flowers are small, reddish brown, pink to purple; leaves are deeply dissected. Unique fruiting stalks have long, feathery haws. B, L, O [56]

Many of our wildflowers this year have the exciting bonus of attracting butterflies—perfect for both wildflower meadows and butterfly gardens. Two species of milkweed—a butterfly's favorite dish (92, 115)—are offered plus Queen Anne's lace (120), rudbeckia (138,139), gay-feather (129), coneflower (122), tickseed (119), bluestem Joe-Pye weed (124), coreopsis (96), and yarrow (110). These are among our more popular selections so be sure to send in your seed order as soon as possible!
but pointed stems. Must have moist soil; excellent for ponds and streams. Zone 3. L [2]

138. Rudbeckia fulgida var. sullivantii. Coneflower. Petals are yellow-orange, 2 inches long; centers are brownish purple. Zone 4. A, B, L (sow when soil is warm) [40]

140. Tussilago farfara. Coltsfoot. Height: 1 foot. Sends up flowers before leaves in early spring. Flowers are small, yellow, daisy-like. Tolerates wide variety of conditions; rock gardens or banks. Zone 3. O [2]

146. Acer parviflorum. Height: 30 feet. An evergreen maple with three-lobed, thick and leathery leaves. Seed pods (samaras) have wings up to 1½ inches long and 3/4 inch wide, similar to a small bamboo. Will adapt to poor soils and wet conditions. Flowers in June through August. Can be invasive. Perennial. Zone 3. L [13]

148. Alnus glutinosa. Green alder. Height: 30 to 40 feet. An evergreen shrub that will grow to 25 feet with support. Bright, orange-red fruit in fall; used for indoor arrangements. Need both male and female plant for fruit production. Zone 2. Ed [41]

151. Celastrus scandens. American bittersweet. Deciduous, climbing or twining shrub that will grow to 25 feet with support. Bright, orange-red fruit in fall; used for indoor arrangements. Need both male and female plant for fruit production. Zone 2. Ed [41]

158. Erythrina herbacea. Eastern coral-bean. Height: 2 to 3 feet. Stems will die back each year. Triangular leaves, scarlet flowers 2 inches long. Fruit are 5-inch pods. Zone 8. G

T he Korean evodia (159), an excellent small tree with few pest or disease problems, is a landscaping gem. Not only does it provide year-round interest but it is one of the few trees to flower in the middle of summer. The pinnately compound, dark green leaves create an airy, light texture and in June and July, the tree becomes covered with white flowers. Afterwards masses of fruits appear, splitting open to reveal small, shiny black seeds.

162. *Gymnocladus dioica*. Kentucky coffee tree. Height: 60 to 75 feet. A good tree for large areas but slow-growing. Leaves are pinnately compound; seed pods are 5 to 10 inches long. Zone 3 to 8. P, L.

163. *Koelreuteria paniculata*. Golden-rain tree. Height: 40 feet. Dense, rounded outline with yellow flowers that bloom in early summer. Leaves are pinnately or bipinnately compound. Fall seed pods resemble miniature Chinese lanterns. Zone 5 to 9. Ec, F.

166. *Paulownia tomentosa*. Empress tree. Height: 45 feet. Fast-growing tree similar to the catalpa tree in texture and shape. Flowers are large and violet. Fruit capsules are dry, brown open “nuts” arranged in a pyramidal fashion. Tolerates a wide variety of soils, conditions, and pollution. Zone 5. H, L (6).

168. *Poncirus trifoliata*. Hardy orange. Height: 15 to 20 feet. Green stems and broad spines. Flowers are 2 inches across, white, and very fragrant. Fruit is small, round, and yellow, ripening in fall. Can be used as a dense, thorny hedge. Zone 5. Ec (51).

170. *Quercus imbricaria*. Shingle oak. Height: 60 feet. Excellent oak for landscape; deciduous, narrow, oblong leaves and russet fall color. Can be grown as a clipped hedge. Zone 5. Eb or O (53).

Vegetables

A May be sown indoors in flats.

B May be sown outdoors where they are to grow.

C Sow indoors into peat pots to minimize transplant shock.

Da Warm stratification of 2 months.

Db Warm stratification of 3 months.

Dc Warm stratification of 4 months.

Dd Warm stratification of 5 months.

Ec Cold stratification of 30 days.

Eb Cold stratification of 60 days.

Ed Cold stratification of 90 days.

F Scarification.

G Hot-water soak.

H Light recommended for germination.

I Dark recommended for germination.

J Cool temperature required for germination (55° to 60° F).

K Warm temperature required for germination (80° F).

L Easy to germinate.

M Difficult to germinate.

N No reliable germination information.

O Sow in fall.

*Beet 'Early Wonder’. Smooth skin and semi-globe shape; about 2½ to 3 inches in diameter. Used for table, canning, and pickling. Matures in 55 days. B, L (8).

*B. Broccoli 'Cape Queen’. Produces heavy center head followed by many side shoots. Matures in 64 days.

*Carrots. Baby and mini. Roots are small, deep orange to red, and ball-shaped. Tender and sweet-tasting. Matures in 68 days. B, L.

*C. Cauliflower ‘Stovepipe’. Performs well in summer but has no fall frost resistance. Matures in 47 days.

*C. Cauliflower ‘Tropical Pride’. Matures in 52 days.

177. Cauliflower ‘White Empress’. Performs well in summer but lacks fall frost resistance. Medium-sized head. Matures in 61 days.

178. Celute. Combines the uses of celery and lettuce. Leaves are used for salad or boiled. Heart of stem tastes like celery and can be eaten raw or boiled. Grows like lettuce. Matures in 75 days for foliage harvest; 90 days for stalk harvest. B, L (8).

179. Chicory. A perennial vegetable, the foliage has a sweet, tangy taste, excellent for salads. It forms tight heads that are cabbage-like in appearance. Zone 5. B, L (3).

180. Endive, French curly ‘Elodie’. Foliage is grown and eaten like lettuce or used to garnish dishes. A cool-weather plant usually grown in late summer to winter. This particular variety is more heat-resistant. 70 days. (52).

181. Escarole. A good substitute for lettuce. Almost always a winter variety. Leaves are mild tasting. Scale leaves are more bitter than the larger outer leaves. Zone 5. B, L (10).
187. Kale ‘Red Russian’. Can be used as ornamental or as vegetable. foliage resembles a large oak leaf; turns red in winter. Very hardy. 56 days. [43]

188. Lettuce ‘Rouge d’tittres’. Red romaine lettuce with large, broad leaves. Use for salads, sandwiches, or garnish. 60 days. [52]

189. Lettuce ‘Royal Oak Leaf’. Heat-tolerant, long-standing lettuce with large, oak-shaped, dark green leaves. 50 days. [8]

Great for salads. B.L [52]

191. Pak choi ‘Hon Tsai Tai’. A yellow-flowering type of pak choi. Harvest purple stalks; eat fried or boiled. A cool weather plant. 50 days. [22]

192. Pak choi ‘Lei Choi’. Chinese cabbage. This Chinese member of the cabbage family has crispy, thick stalks and dark green top leaves. Stir-fry or use in Oriental dishes. 45 days. [52]

193. Pumpkin ‘Mini Munchkin’. Miniature version of old-fashioned pumpkins, these reach only 3 to 4 inches in diameter. Is both ornamental and has a sweet flavor. Matures in 85 days. B.L [52]

Keep this catalog!

Seed packets are marked by catalog number only, so it will be your only means of identifying the seeds you have selected.

200. Chervil. Anthriscus cerefolium. Height: 18 inches. Leaves have an anise-parsley flavor and are used for flavoring soups, fish, meats, or salads. An annual member of the carrot family. Excellent as a pot plant or indoor herb plant. A.B.L

201. Coriander. Coriandrum sativum. Height: 1 to 3 feet. Annual member of the carrot family. Delicate plant with lacy foliage. Seeds (coriander) are used for baking and flavoring foliage (cilantro or Chinese parsley) is used for Oriental and Mexican cooking. A.B.L [10]

204. Florence fennel (finocchio). Foeniculum vulgare var. dulce. A perennial grown as an annual. Height: 3 to 4 feet. Leaves have anise flavor. Used for seasoning salads, eggs, fish, and sauces. Stems can be cooked and eaten as a vegetable. A.L [8]

207. Italian parsley. Petroselinum crispum var. neapolitanum. Biennial. Leaves are flat. Most flavorful of all parsleys. Leaves are used as garnish and for seasoning soups and other dishes. B.G.I.L [3]

208. Kailouma calendula. Annual. Height: 20 inches. Edible gold and orange flowers add color and flavor to egg and cheese dishes and salads, saffronlike flavor to rice dishes. Prefers cool temperatures. Will bloom through fall. A.B.L [52]

212. Sweet marjoram. Origanum majorana. Annual. Height: 2 feet. Has minute white-pink flowers that bloom in mid-summer. Foliage can be used as a milder alternative to oregano for meats and Italian dishes and as a headache cure. B.L [3]

213. Tansy. Tanacetum vulgare. Herbaceous perennial. Height: 3 feet. Flowers are yellow and buttonlike. Foliage is strongly aromatic and has a sweet flavor. Matures in 85 days. B.L [10]
The plants listed below can be grown outside only in Zone 10 unless otherwise noted.

215. Cereus eriophorus pfeiffer var. fragrans. Long-stemmed cactus with deep ridges and short spines. Funnel-shaped flowers bloom at night. A.H.K (after germination, increase light and keep soil dryer than usual) [36]

216. C. eriophorus var. intermedius. Taller cactus with long-stemmed flowers. Height: 10 feet. Flowers are yellow with red centers. A.H.K (after germination, increase light and keep soil dryer than usual) [36]

218. Echinocereus variabilis. Small, barrel-type cactus with ribs and a close covering of fine spines. Funnel-shaped flowers. Yellow to orange-red fruits. A.H.K (after germination, increase light and keep soil dryer than usual) [36]

219. Echinocereus fasciculatus. Cactus. Height: 1 foot and 4 inches in diameter. Wide and rounded ribs; red-yellow flowers. A.H.K (after germination, increase light and keep soil dryer than usual) [36]

220. Harrisia brookii. Brook's dill. Thin, long-stemmed cactus with night-blooming, funnel-shaped flowers. Yellow to orange-red fruits. A.H.K (after germination, increase light and keep soil dryer than usual) [18]

221. Mammillaria loiosa. Cactus. Very small, flat to the ground with big pink flowers. Summer: Susceptible to water rot; requires gritty soil. Zone 9. A.H.K.L (after germination, increase light and keep soil dryer than usual) [18]

224. Mimosa pudica. Sensitive plant. Height: 15 inches. Leaflets fold when touched. Flowers resemble small pinkish purple puffs. Should not be confused with Albizia julibrissin, commonly called the mimosa, which is abundant and hardy throughout the United States. Can be grown as a summer annual. Does not do well as a houseplant. Requires even moist soil, diffused light. L [3]

228. Solanum seafordianum var. alba. Brazilian nightshade. A white-flowering form of the above. [32]

229. Thelocactus bicolor var. bolanis. Cactus. Height: 1 foot and 4 inches in diameter. Wide and rounded ribs; red-yellow flowers with light-colored eyes. Summer. Zone 7. A.H.K.L (after germination, increase light and keep soil dryer than usual) [36]

Free Advice!!

Have questions about seeds, sources, fungus, or fertilizer? We'd like to help you solve your gardening problems. Write to us here at River Farm or take advantage of our toll-free number to call Gardener's Information Service.

1 (800) 777-7931

This is a free service—one of your AHS membership benefits! We have an extensive reference library, plus staff horticulturists who can answer questions about plant care or help you find sources for gardening tools, plants, and accessories.

Some Good Books

If you feel in need of guidance in starting your seed, the AHS Book Program offers two useful publications. The New Seed-Starter's Handbook by Nancy Bubel is a thorough, basic how-to that addresses such diverse topics as soil preparation, using seaweed extract, cold frames, helping children garden, and saving, storing, and finding seed. Written from the standpoint of an organic vegetable gardener, it includes information on starting seed of 200 plants, including trees and wildflowers. Publisher's price, hardcover: $14.95. AHS member price: $12.50.

Park's Success With Seeds by Ann Reilly is recommended by members and AHS horticulturist Donna Matthews. Shorter on general information, its strength is a 15-page encyclopedia on individual plants with color photos of seedlings: especially useful if you lose a label or have doubts about yanking up a volunteer. Publisher's price, hardcover: $14.95. AHS member price: $12.50. See page 13 of the News Edition to order.

Tropical Trees for Zone 10

231. Camptotheca acuminata. Height: 75 feet. A deciduous tree, fast growing, and a good shade tree. Leaves are 6 inches long with attractive blooms. L

232. Cassia spectabilis. Height: 40 to 50 feet. Flowers are ½ inch across and bright yellow. N

Thanks to our donors!

We are grateful to the following individuals, businesses, and organizations whose donations of seed made this year’s program possible:

1. Abundant Life Seed Foundation, Port Townsend, WA
2. John Adkins, Arona, WA
3. Applewood Seed Company, Golden, CO
4. Arnold Arboretum, Jamaica Plain, MA
5. Christine Baer, Belmont, MI
6. Olin M. and Mary L. Barnes, Corvallis, OR
7. Jean Beaudry, Bethesda, MD
8. W. Alee Burpee Co., Warminster, PA
9. Mollie Caplan, Potomac, MD
10. Companion Plants, Athens, OH
11. Leonard Corbett-Grant, Napa, CA
12. Beverly D. Corey, Westminster, MD
13. Mrs. Howard A. Crosby, Carmel, ME
14. Irene Davis, Gig Harbor, WA
15. F. A. Dominik, Bayonne, NJ
16. Robert Duller, Milwaukee, WI
17. Environmental Seed Producers, El Monte, CA
18. Fairfield Tropical Garden, Miami, FL
19. Elise Felton, Evanston, IL
20. F. J. Feraco, Villas, NJ
21. Mr. and Mrs. Paul Perzer, New Haven, CT
22. Connie Hendren Fitz, Woodstock, VT
23. Frosty Hollow Nursery, Langley, WA
24. Molly Hackett, Victor, MT
25. Vincent and Evelyn Helm, Sun City, AZ
26. Carolyn Hill, Alhambra, CA
27. Molly A. Hudson, Mendham, NJ
28. B. Charles Jenkins, Salinas, CA
29. J. Kammerer, Guilford, CT
30. Mrs. Joseph J. Kramp, Baltimore, MD
31. R. D. Laidlaw, Bedminster, NJ
32. W. D. Lee, Magnolia, TX
33. V. T. Mendelson, Columbia, MD
34. George E. Mendenhall, Ann Arbor, MI
35. Mrs. Lee Meneice, Pebble Beach, CA
36. Mesa Garden, Bolen, NM
37. Mildred V. Metz, South Dennis, MA
38. Mrs. Samuel Miller, Abingdon, VA
39. Native Seed Foundation, Movie Springs, ID
40. North Carolina Botanic Garden, Chapel Hill, NC
41. Northern Nurseries, Bloomington, MN
42. Parsley’s Cape Seeds, Somerset West, South Africa
43. Peace Seeds, Corvallis, OR
44. Bonnie Peckat, Hayttesville, MD
45. Alice M. Pierce, Falmouth, MA
46. James Randall, Saint Albans, NY
47. Mrs. Peter Sacken, Lunenburg, MA
48. F. W. Schumacher Co., Inc., Sandwich, MA
49. Seed Source, Tuckasegee, NC
50. Vincentine Sette, Midbrook, NY
51. James Sharpe, Lexington, SC
52. Shepherd's Garden Seeds, Felton, CT
53. James Snyder, Loveland, OH
54. Marion Treiber, Akron, OH
55. Mary Ruth Unger, Anacosta, MD
56. University of Virginia, Charlottesville, VA
57. Vermont Wildflower Farm, Charlotte, VT
58. Tom Vogelsang, Sunman, IN
59. Elizabeth Vos, McLean, VA
60. Keith Williams, Cedaredge, CO
61. Yvonne V. Wilson, Troy, MI
62. Ella May Wulff, North Windham, CT
63. Joy H. Yarnell, Upton, ME

The American Horticultural Society Seed Distribution Service

The American Horticultural Society Seed Distribution Service

List Your Selections By Number Only

Please send me the following “first preference” seed packets:

1. 5. 9. 13.
2. 6. 10. 14.
3. 7. 11. 15.
4. 8. 12.

☐ Please send me the supplemental list.

These are my alternate selections:

16. 18. 20. 22.
17. 19. 21. 23.

☐ Please send me 10 selections. I enclose my $2 voluntary contribution to help defray postage and handling costs. (In case the supplies of some your selections have been depleted, please list alternate selections on the blanks provided.)

☐ Please send me all 15 selections. I enclose my $3 donation. (In case the supplies of some your selections have been depleted, please list alternate selections on the blanks provided.)

You can help to continue to expand and improve our Seed Program if you contribute more. Contributions to the American Horticultural Society are tax-deductible.

Please write separate checks for the Seed Program, book orders, and other transactions.

MAIL THIS FORM TO:
SEEDS 1990, American Horticultural Society,
7931 East Boulevard Drive, Alexandria, VA 22308
Q: This past fall my neighbor’s azalea bush bloomed again and a friend’s lilac bush also rebloomed. Why are they blooming again in the fall and is it something to worry about?
L. C., Alexandria, Virginia

A: It is not uncommon for some azaleas, lilacs, irises, and daylilies to bloom again in the fall in a reaction to springlike environmental conditions. In mid-summer, after these plants have bloomed for the first time, they set flower buds. In the fall we often get a cold spell followed by Indian summer: warm, sunny days much like spring. The plant, fooled by cool weather followed by warm weather, reacts as if it is spring and flowers again. Your friends should not worry; this is a natural reaction that does not harm the plant. Nor should you worry if your plants don’t rebloom.

Q: I have a small pond on my property that I would like to landscape. I am concerned that the edge of the pond might erode, so I would like to plant attractive yet stabilizing waterlovers that enjoy full sun. Can you suggest any plants?
M. K., Morgantown, Pennsylvania

A: There are many water-loving plants suited for pond culture. Foliage plants that will help prevent erosion when planted around the pond bank include arrowheads, water arums, dwarf bamboos, thalias, rushes, cattails, and horsetails. Flowering plants that will add color and beauty to your pond area include spider lilies, water-loving irises, water cannas, and the Longwood hybrid cannas.

Q: I have been planting dahlias for several years now, but I have noticed something odd about some new red- and yellow-flowering types. When I dug up the tubers this past fall, I found that they hadn’t increased in size like my other tubers. They are exactly the same size as when I planted them in the spring. Why is this?
D. T., Wallace, Michigan

A: If all of your tubers were failing to increase in size, then I would say you are likely to have a fertilizer problem. Dahlias need potash and superphosphate in a 0-20-20 combination applied in spring as they are planted. But since only these particular cultivars are not getting larger, then it is probably just a cultivar characteristic. Some cultivars don’t increase very much and some do. Your tubers might have been bred for beautiful flowers but not for significant increases in tuber size.

—Peggy Lytton
Most readers skip over the acknowledgment, preface, and table of contents, but in this particular book one of the most important messages is found in the introduction: healthy plants are the least susceptible to diseases and pests. Give them the proper amount of light, temperature, food, and water and they will be able to fend off most problems. If a problem does occur, the authors advise, use biological controls and environmentally-safe tactics such as Bt, rotenone, pyrethrum, and pheromone traps. In short, throw away those chemicals and read this book!

---Peggy Lytton

Simon and Schuster's Guide to Orchids

From Acacallis cyannea to Zygopetalum maxillare this orchid guide provides an alphabetical list of 162 cultivated species. Each entry features a brilliant full-color photograph along with easy-to-understand symbols for cultivation, temperature (cool house, intermediate/temperate house, hothouse), amount of light required (full sun, half shade, shade), and scent (absent or present). Also included are the plant's origin, description, and cultivation information. The guide contains a wealth of advice on growing orchids—the introduction includes detailed charts, drawings, and descriptions of the structure, classification and nomenclature, greenhouse and indoor cultivation, pests and diseases, and hybridization and multiplication. Symbols along the left side of the page quickly identify the best orchids for one's available growing conditions. A glossary, bibliography, and index are provided for the orchid enthusiast. Part of Simon and Schuster's Nature Guide Series, the book was originally published in Italy under the title Tutto Orchidee. By Alberto Fanfani and Walter Rossi. U.S. Editor, Stanley Schuler. Simon and Schuster, New York, New York, 1988. 255 pages. Color photographs, black and white drawings. Publisher's price: softcover, $13.95. AHS member price: $11.85.

Astrological Gardening

Louise Riotte has been practicing astro-organic gardening and herbalism for most of her nearly 80 years. Intended to supplement our current gardening practices, Astrological Gardening holds that the stars can influence the health of our plants. After defining the basic principles of...
Wild Plants of America
Nature walks were an important part of my childhood—I still remember the thrill of finding an "unknown" wildflower and searching through the guidebook to discover its name. Those who have had similar experiences will enjoy *Wild Plants of America*. Subtitled "A Select Guide for the Naturalist and Traveler," the book is not intended to be a field guide but rather a handbook of natural areas, and in national and state parks. Smith has personally recorded most of the plants listed. The book will be helpful for vacationers and armchair plant explorers—I'm dreaming of trips to the White Mountains of New Hampshire, the White Mountains of New Hampshire for a glimpse of fringed polygala. General directions are provided to most areas. An appendix contains a supplemental list (including addresses) of botanical gardens and arboreta in 42 states and the District of Columbia, followed by a comprehensive index. By Richard M. Smith. John Wiley & Sons, New York, New York, 1989. 267 pages. Black and white drawings. Publishers price: softcover, $12.95. AHS member price: $11.00.

—Mary Beth Wiesner

Book Order Form

Please send me the following books at the special AHS member prices.

- **LANDSCAPE PROBLEM SOLVER**
 - $19.95
 - Enclosed is my check for $_____.
 - Charge to:
 - Visa
 - MasterCard
 - Exp. Date: ___

- **MODERN MINIATURE DAFFODILS**
 - $29.75
 - AHS member price:

- **GUIDE TO ORCHIDS**
 - $11.85
 - AHS member price:

- **ASTROLOGICAL GARDENING**
 - $8.50
 - AHS member price:

- **WILD PLANTS OF AMERICA**
 - $11.00
 - AHS member price:

- **SEED STARTERS HANDBOOK**
 - $12.50
 - AHS member price:

- **PARK'S SUCCESS WITH SEEDS**
 - $12.50
 - AHS member price:

Please add $2.50 per book for postage and handling. Virginia residents add 4.5% sales tax. Please allow six weeks for delivery. Prices are subject to change without notice.

MAIL TO: AHS Books, 7931 East Boulevard Drive, Alexandria, VA 22308.

A list of all the books offered at a discount to AHS members is currently available. The list, which contains an order form, originally appeared in the September issue. To receive your copy send a self-addressed, stamped envelope to: Book List, AHS, 7931 East Boulevard Drive, Alexandria, VA 22308.
Gardener’s Dateline

Jan. 4. Lecture and Slide Show on Succulents for Winter Color. San Marino, California. Information: The Huntington, (818) 405-2141.

Through Jan. 7. Annual Poinsettia Show. U.S. Botanic Garden, Maryland Ave. and First St., S.W., Washington, D.C. Information: (202) 225-7099.

Jan. 9. Landscape and Nursery Expo ’90. Sacramento Community Convention Center, Sacramento, California. Information: Ken Brizzi, (916) 455-9601.

Feb. 1. Lecture on Selecting Camellias. The Huntington, San Marino, California. Information: Catherin Babcock, (818) 405-2147.

Feb. 4-6. ASHS Southern Region Annual Meeting. Little Rock, Arkansas. Information: Milo Burnham, Mississippi Cooperative Extension Service, P.O. Box 5446, Mississippi State, MS 32301, (601) 325-3935.

Feb. 16-18. Maymont Flower and Garden Show. Richmond Center, Richmond, Virginia. Information: Maymont, 1700 Hampton St., Richmond, VA 23220, (804) 358-7166.

Mar. 1-3-4. Wildflower Photography Lecture & Workshop taught by John D. Smithers. The Desert Botanical Garden, Phoenix, Arizona. Information: (602) 941-1225.

Mar. 9-19. Fourth FLORISSIMO Trade Show. Parc des Expositions, Dijon, France. Information: Parc des Expositions de Dijon, Boite Postale 108, 21003 Dijon, France, or call 80.71.44.34.

1990 Flower Shows

- **Feb. 14-18.** Atlanta Flower Show. Atlanta Apparel Mart, Atlanta, GA. (404) 875-5858.
- **Feb. 16-18.** Central Missouri Home Lawn and Garden Show. Expo Center, 1-70, Columbia, MO. (314) 372-2277.
- **Mar. 2-11.** New York Flower Show. Pier 92, 52nd St. and 12th Ave., New York, NY. (212) 757-0915.
- **Mar. 8-11.** Metropolitan Louisville Home-Garden and Flower Show. Kentucky Fair and Exposition Center, Louisville, KY. (502) 637-9737.
- **Mar. 10-18.** Indiana Flower and Patio Show. Indiana State Fairgrounds, Indianapolis, IN. (317) 255-4151.
- **Mar. 24-Apr. 1.** Cincinnati Home and Garden Show. Cincinnati Convention Center, Cincinnati, OH. (513) 825-1600.
- **Mar. 24-Apr. 1.** Portland Home and Garden Show. Multnomah County Exposition Center, Portland, OR. (503) 246-9291.
- **Apr. 6-8.** Ann Arbor Flower and Garden Show. University of Michigan, Yost Field House, Ann Arbor, MI. Information: Judith Corkran Katch, Matthaei Botanical Gardens, 1800 Dixboro Road, Ann Arbor, MI 48105, (313) 998-7343.
- **Apr. 25-29.** San Francisco Garden Landscape Show. Piers Two and Three, Fort Mason, Marina Blvd. and Buchanan St., San Francisco, CA. (415) 221-1310.
44th Williamsburg
GARDEN SYMPOSIUM

April 1-4, 1990

The American Horticultural Society and the Colonial Williamsburg Foundation invite you to come to Williamsburg for the annual Garden Symposium, America's oldest and most prestigious gathering of garden enthusiasts. This will be a fabulous opportunity to explore what's old and what's new in America's gardens. An array of renowned speakers will discuss the theme, "Vintage Plants and Contemporary Gardens." The Garden Symposium will entertain some of the newest ideas in American gardening, including the increasingly popular practice of using "old-fashioned" or "heritage" plants in today's gardens. Surprisingly, these antique flower and vegetable cultivars are found in gardens everywhere.

Through slide lectures, presentations, tours, exhibits, and clinics, practical ideas about updating gardens as well as innovative garden designs will be offered. In addition to the extensive group of speakers, there will be gardeners' clinics, special presentations, and an assortment of exhibitions and activities. "Garden Magic in the Magic City" is the theme for this year's featured city, Birmingham, Alabama.

Speakers in order of appearance are:

Rachel Snyder, garden writer and editor emeritus, Flower and Garden magazine: "Long Vistas from the Garden Path"

Elsa Bakalar, lecturer and garden designer: "Old Fashioned Flowers for Modern Gardens"

Frederick McGourty, author, nurseryman, and garden designer: "A Modern Old-Fashioned Garden"

John Alex Floyd Jr., Southern Living magazine: "Garden Magic in the Magic City—Birmingham"

Rosalind Creasy, author, lecturer, and designer of culinary gardens: "Heritage Vegetables and New American Cuisine"

William T. Flerner III, author, nurseryman, and horticulturist: "A New Look at Old and New Trees"

Virginia Bissell, Lula Rose Blackwell, Beverly White Dunn: "Elegance in Flowers: Flower Arranging Birmingham Style"

Henry Marc Cathey, director, U.S. National Arboretum: "The New USDA Plant Hardiness Map of North America"

John C. Austin, senior curator and curator of ceramics and glass, Colonial Williamsburg: "Did They Really Use These as Flowerpots? Eighteenth-Century Flower Containers"

Bonnie Lee Appleton, horticulturist, Cooperative Extension Service: "Making Old Gardens New"

David M. Lilly, retired chairman of the board, the Toro Company: "Welcome Spaces: User Friendly Gardens for Public Spaces"

Come to Williamsburg this spring for a new look at America's rich garden heritage and an opportunity for insightful discussions with America's leading garden authorities.

For a registration folder, please mail the coupon below to Symposium Registrar, Box C, Williamsburg, VA 23187, or call 1-800-220-7255.

| Name ____________________________ |
| Address _________________________ |
| City ____________________________ |
| State _______ Zip _______________ |

Williamsburg Garden Symposium
Symposium Registrar
Box C
Williamsburg, VA 23187
Interns Beautify Grounds, Gain Skills

In 1989, AHS's River Farm headquarters was fortunate to have three outstanding interns and two part-time student groundworkers who helped the year-round staff make substantial improvements in the gardens and grounds. The interns gained practical knowledge about garden design, development, and maintenance.

The summer interns were Deborah Airhart, a student at the North Carolina State Agricultural Institute in Raleigh; and Mark Llewellyn, a graduate of Birmingham South who hopes to pursue an advanced degree in landscape architecture.

Helping part-time were Jane Beggs, a student in horticulture at Michigan State University, who has already reserved her place as an intern for the summer of 1990; and Elizabeth Zaitzeff, a senior in high school who also worked in the River Farm gardens part-time in the summer of 1988.

Those here in the summer not only received hands-on horticultural training, but took educational field trips to such places as the Washington Cathedral, the National Arboretum, the Gardens of the British Embassy, and the White House gardens and grounds.

Joining us this fall was Catherine Gau, a student at Murray State University in Kentucky. In addition to her work on the grounds, Gau has helped out with the AHS Book Program, and helped organize the annual Seed Program, which was just getting into full swing when she arrived.

"Classroom knowledge is an essential part of any education," says Gau, "but there is a major difference between hearing how something is done and actually getting out there and doing it."

"Before I came here, I did not quite have a feel for outdoors maintenance. Now I am comfortable with almost any task. After I finish my education, I can apply for employment with confidence—something I would not have been able to do without my hands-on experience at River Farm. It has enriched my life and reaffirmed my decision to become a true horticulturist."

Donna Matthews, AHS horticulturist, noted that the intern program is an important aspect of the Society's educational mission. In 1990, she hopes to expand the program to four full-time interns, to give them more opportunities for field trips, and to provide more formal on-site classes.

Helping GROW Grow

AHS has recently teamed up with Garden Resources of Washington (GROW), a non-profit organization that, since 1982, has started and supported ten community gardens in Washington, D.C.

GROW provides a variety of services, including helping city residents find garden plots or start new gardens; assessing vacant land to determine its suitability for gardening; and helping city residents form committees to manage their gardens. When needed, GROW also provides technical assistance, such as soil tests and soil improvements, garden design, plowing, fencing, and gardening workshops.

AHS's involvement with GROW will include donating seeds to help the organization expand its efforts, and providing technical support through our educational outreach program. GROW hopes to both expand its existing community gardens and to develop several new gardens, including a new senior citizens' garden, more gardens for residents of public housing, and a garden at a shelter for homeless families.
Thank you to our 1988-89 Annual Fund Donors!
These generous supporters have helped AHS continue its worthwhile work in horticulture in 1989.
We’re grateful to each and every one of you!

Mr. Kazuyuki Abe
Mr. Anita Aic
American Association of Nurserymen
Mr. Matthew C. Anacker
Ms. Roberta Anderson
Mr. and Mrs. John A. Antonson
Ms. Catherine Ashcraft
Mr. Allan E. Baker
Mr. and Mrs. Charles Baldwin
Mr. and Mrs. G. Carl Ball
Mrs. John H. Barber
Mrs. Anna B. Beattie
Mr. H. Hampton Bell
Ms. Hildegard Bensheimer
Mrs. Lucille K. Beving
Dr. Dorothy A. Black
Mrs. Robert L. Black Jr.
Miss Dorothy Blankenburg
Mrs. Mary K. Blount
Mrs. Elspeth G. Bobbs
Mr. Kent H. Borges
Ms. Joyce Browning
Ms. Barbara Ann Bueltel
Mr. and Mrs. Walter Bulle
Ms. Deanie Buono
Mrs. Sonya L. Burgher
Mrs. Anna W. Burtis
Dr. and Mrs. John A. Burkholder
Mr. Dudley Carlson
Ms. Juana J. Carpenter
Dr. William B. Chamberlin Jr.
Ms. Virginia Chatam
Mr. and Mrs. W. Chambers
Mr. and Mrs. Harold E. Christensen
Mr. David E. Clark
Mrs. Richard A. Cochran
Ms. Brenda K. Colasanti
Dr. Marit V. Colter
Mr. James D. Corbett
Mrs. Erastus Corning II
Mrs. Richard C. Cowan
Mrs. Anne C. Crane
Mr. William B. Crenshaw
Mrs. Thomas Creswell
Miss Irene Crosby
Mr. Orin C. Crothers
Mrs. John L. Dampeor
Mrs. Burton K. Davis
Mr. Keith G. Davis
Mr. Richard Davis
Mr. James L. Dawes
Ms. Rita Dawson
Mrs. I. H. Delrick
Ms. Patricia A. Delor
Mrs. Pamela De Vaux
Mrs. Alfred J. Dickinson III
Ms. Martha Donnelly
Ms. George Doolittle
Ms. Sheila L. Dougan
Mr. and Mrs. James C. Dudley
Mr. John L. Due
Mrs. Henry A. Dumper
Mr. Lawrence H. Dunlop
Mrs. H. B. du Pont
Mrs. Nicholas R. du Pont
Dr. Mary S. Durham
Mrs. Troy W. Earhart
Mr. and Mrs. L. Eddy
Ms. Julia B. Evering
Mrs. R. L. Emery Jr.
Mr. Richard D. Erb
Mrs. K. N. Espean
Dr. Jared Falek
Mr. Robert Faris
Mrs. Stephen M. Farrand
Mr. and Mrs. W. J. Farrington
Mr. John P. Feather
Mrs. Mildred Feinblum
Mr. and Mrs. Edward C. Fogg III
Mr. William B. Foli Jr.
Mrs. Charles W. Folks
Ms. Ruth Fowler
Ms. Felicia Freed
Mr. Peter H. B. Freifenghuysen
Mr. Paul J. Frisk
Mrs. Louise Freesmeiling
Mr. John H. Freeman
Mrs. J. G. Gibson
Ms. Marjorie G. Glaim
Dr. Edward S. Godleski
Mrs. Norman H. Goldberg
Mrs. Aurelio Gonzalez
Mr. Charles Goodwin
Dr. and Mrs. David G. Green
Mr. G. P. Greenhalgh
Mr. Patrick Gronweny
Mrs. Donis M. Guest
Mrs. Roy A. Haberstock
Mr. and Mrs. Ernest A. Hamms
Mr. C. Beati Hanna
Mrs. Graham O. Harrison
Mr. Ryo Hashima
Mrs. E. Phillips Hathaway
Ms. Margaret Headley
Mr. Ralph L. Henry
Mr. Nicholas A. Herbert
Mr. Henry Hitchcock
Mrs. Judith B. Hoblet
Mr. Lynell G. Hood
Mrs. William D. Horne
Mr. John C. Howland
Ms. Marilyn J. Huheey
Mrs. David S. Hume
Mr. James B. Hume
Mr. Al H. Huntington
Mrs. Cheryl Hutchins
Dr. and Mrs. Wiley C. Hutchins
Mr. Lewis J. Hutchinson
Mr. and Mrs. Richard J. Hutton
Mrs. Charles H. Hyde
Mr. James H. Inglis
Mrs. William C. Ireland
Mrs. Stuart Jacobs
Mr. and Mrs. Lars E. Jansen
Col. William E. Johnson
Mrs. Ann L. Johnson
Mrs. J. R. Jude
Mr. Sid Kaplan
Mrs. Elizabeth Anne Keat
Mr. Joy Keeling
Mrs. Gabriela Keller
Mrs. Carol Kellermann
Mrs. Ray M. Kessler
Mrs. William G. Killihour
Mr. Tom Kimball
Dr. Milen J. Kopace
Mr. Peter J. J. Kosiba
Mrs. Donald Krueger
Mr. and Mrs. John Kuser
Mrs. Kathryn W. Lamb
Mrs. and Mrs. Jack Lancaster
Mrs. Vivien H. Larson
Mr. and Mrs. Gordon Ledbetter
Mr. Henry Leeb
Mr. Joel D. Lindh
Dr. Samuel C. Linzenberger
Miss Carol Loucks
Mrs. Bruce Loughry
Ms. Jeannette Lowe
Mr. Joseph T. Maier
Mrs. Mary Maran
Mr. Ralph Marek
Mrs. Walter A. Martin
Mr. William H. Matthews
Mr. Ruth Mathews
Mr. W. G. Matton Jr.
Mr. and Mrs. John R. Mayor
Dr. and Mrs. Hunter McClung
Mr. John W. McCormack
Mr. George Cole S. McCray
Mrs. Louise McCloy
Mr. and Mrs. James E. Meek
Mr. and Mrs. William M. Mein
Mrs. Thomas W. Merritt Jr.
Mr. and Mrs. Joseph S. Michael
Mrs. Henry C. L. Miller
Mrs. Pendleton Miller
Mr. D. D. Milligan
Mr. Raymond R. Mills
Mrs. Helen T. Molloy
Mrs. W. A. Moncreif Jr.
Mrs. Patricia M. Moore
Mr. S. R. Mountsion
Mr. Horace A. Murray
Mr. Frank Myers
Mrs. Robert Myers
Mrs. Richard P. Nash
Mrs. Virginia Newman
Mrs. Gloria Norwood
Mr. and Mrs. Richard Ober
Mrs. June E. O'Brien
Oehme, van Sweden & Associates
Mr. Cesar Ortiz
Mr. Richard Osborne
Mrs. and Mrs. Robert T. Owen
Mrs. Patricia Palau
Mrs. Cathy L. Palm
Mrs. Victoria W. Parini
Mrs. Beatrice A. Pask
Mrs. Christine W. Paton
Mrs. Elise Payne
Mr. John Pinniman
Mrs. Elizabeth Hood Phillips
Mr. Arlo Phillips
Dr. Robert A. Piper
Mrs. Eleanor D. Popper
Mrs. Ralph C. Powell
Mrs. David Y. Proctor Jr.
Mr. Stephen J. Purnell
Mr. Francis M. Raackmann Jr.
Miss Barbara Ramming
Mrs. Suzanne Reed
Mr. Daryl Reinke
Mrs. Barbara A. Richmond
Mr. Harry A. Riesetto
Mrs. Jane Gertel Robertson
Mr. and Mrs. Lake Robertson
Mr. Richard A. Rogers
Mrs. M. Romanino
Mrs. Donald P. Ross
Mrs. Vera Ruedel
Mrs. Donis A. Rupe
Mrs. Donna Valley Russell
Mr. Frank Vrkgren
Mrs. Audrey Sabol
Mr. Ernest J. Schultz III
Mrs. August H. Schilling
Mrs. and Mr. Richard P. Schlosser
Mr. and Mrs. Frank C. Schroeder Jr.
Miss Sara Scott
Mr. Winfield Shiras
Mr. and Mrs. Earl E. Shouse
Dr. and Mrs. Alfred J. Shuman
Mrs. Kathryn C. Simons
Mr. Charles E. Sisung
Miss Arnette H. Smith
Mr. Gerald M. Smith
Mrs. Howard H. Smith
Mrs. Lois B. Smith
Mr. Robert Smith
Snead & Camp Craft
Mrs. Harry K. Spoo
Dr. and Mrs. George E. Staehle
Mr. John Stephens
Mrs. J. S. Stokes
Mr. J. Franklin Stone
Mrs. Mary Stradinger
Mrs. T. A. Strout
Mrs. Henderson Suppie Jr.
Mrs. Bettye J. Susimi
Mrs. Edward C. Sweaney
Mrs. Wyllis Terry
Mrs. Trevor Thomas
Mr. and Mrs. Dean Thompson
Mr. and Mrs. Douglas H. Thompson
Mrs. Claude Thrilied
Mrs. Martha Tischler
Dr. Paul W. Tilman
Mr. Z. Andrew Torok
Mr. Artoon Tricker
Mrs. Richard L. Turner
Mrs. Cathy Umprey
Mr. Robert Uniacke
Mr. Ted Wahl
Mr. Robert S. Waldo
Mr. R. R. Waller
Mr. and Mrs. Edward J. Wann Jr.
Mrs. Ralph M. Watkins
Mrs. Douglas Watson
Mrs. William Weeden
Mrs. Ellen Weiss
Mrs. J. C. Whelte
Mrs. H. White
Mrs. J. K. Whitney
Mr. John H. Whithworth Jr.
Mrs. Claudia Wiley
Mr. and Mrs. David C. Williams
Mr. Silas Williams Jr.
Mrs. Burke Williamson
Mr. Lloyd L. Wills
Mrs. Helen Van Pelt Wilson
Mrs. Joan K. Wilson
Mrs. Isabel Sellors
Womble
Mrs. Ruth L. Woodford
Mrs. Efhel D. Woodward
Mrs. Joe H. Woody
Mr. Ernest W. Woodard
Mrs. Lois W. Wright
Mrs. Charlotte S. Wyman
Yates Garden Club
Mrs. John R. Young
Dr. J. W. Zabley Jr.

As of October 15, 1989.
Travel/Study Trips for the AHS Gardener

January 21-28, 1990
Gardens of the Caribbean Windward Islands
Explore tropical orchid collections, magnificent rain forests, historical sugar plantations, sparkling beaches, beautiful Caribbean homes, and Jean-Philippe Thoze's Balata Gardens in Martinique. Program coordinators are AHS President Carolyn Marsh Lindsay, Bob Lindsay, and AHS board member Andre Viette.*

March 28-April 8, 1990
Botanical Paradise of Costa Rica
Trips include the National Museum of Costa Rica, Claude Hope's Linda Vista, Monteverde Cloud Forest Reserve, where you can see a volcano and rare, exotic birds; and Corcovado National Park. Program coordinator is Atlanta Botanical Garden's Ann Park. Program President Carolyn Lindsay, and AHS board member Andre Viette.*

April 21-May 6, 1990
Belgium and Holland
This repeat of an exciting 1985 tour will include the Floralis in Belgium and Holland, and barge trips along canals in Holland. Conrad-Pyle's Richard Hutton will guide the tour.**

June 23-July 3, 1990
Natural Gardens of Alaska
Cruise aboard the Yorktown Clipper in search of natural wonders including wildlife, spruce forests, and fields of lupines. See, up close, Tracy Arm, Glacier Bay, and Le Conte Bay as you cruise along the sheltered inside passage of Alaska. Then enjoy a post-cruise stay in Vancouver to visit Nitobe Japanese Gardens, VanDusen Botanical Garden, and the famous Butchart Gardens on Vancouver Island. Program coordinator is AHS President Carolyn Marsh Lindsay and Bob Lindsay.*

September 12-23, 1990
Castles and Gardens of Scotland
See Culzean Park Castle and Craeke Woodland Gardens in Ayrshire; the Clan Donald Center Woodland Gardens on the Isle of Skye; and the highland gardens at Inverness and Edinburgh. You'll be guided by Evrett Miller, former Longwood Gardens director.**

Classifieds

Classified Ad Rates: $1 per word; minimum $20 per insertion. 10 percent discount for three consecutive ads using same copy. Provided each insertion meets the $20 minimum after taking discount. Copy must be received on the first day of the month two months prior to publication date. Send orders to: American Horticultural Society Advertising Department, 80 South East, Alexandria, VA 22304. Or call (703) 823-6966.

AFRICAN VIOLETS
America's Finest—177 best violets and gesneriads. Color Catalog and Growing "Tips" $5.00. FISCHER GREENHOUSES, Box II, Linwood, NJ 08221.

THE AVANT GARDENER
FOR THE GARDENER WHO WANTS TO GET MORE OUT OF GARDENING! Subscribe to THE AVANT GARDENER, America's most useful gardening publication. Every month this unique news service brings you the most practical information on new plants, products, techniques, with sources, features, special issues. 22nd year. Awarded Garden Club of America and Massachusetts Horticultural Society medals: Curious? Sample copy $1. Serious? $12 full year (reg. $18). THE AVANT GARDENER, Box 489M, New York, NY 10028.

BEEKEEPING SUPPLIES
ASSURE GARDEN PRODUCTIVITY and increase wildlife through BEEKEEPING. Free Catalog. BRUSHY MOUNTAIN BEE FARM, Rt. 1, Dept. 36, Moravian Falls, NC 28654-9988.

BONSAI
BONSAI TREES, pottery, books, tools, trays, supplies, and soils. Catalog $2.50. BONSAI CREATIONS, P.O. Box 7511AH, Ft. Lauderdale, FL 33334.

BOOKS
1985 Edition EXOTICA 4, with 16,300 photos, 405 in color, 2,600 pages in 2 volumes, with Addenda of 1,000 Updates, by Dr. A.B. Graf, $187. TROPICA 3, revised 1986, 7,000 color photos, now 1,156 pages, $125. Exotic House Plants, 1,200 photos, $8.56 Circulars gladly sent. ROEBHS, Box 125, E. Rutherford, NJ 07073.

Hardy, Enjoyable, Useful, Quaint books on Plants. Current $1—Sale Catalog Spans 450 Years from Esteen's Gardening Dated 1593 to O'Keeffe's Flowers dated 1899. POMONA BOOKS, Rockton, Ontario, Canada LOR IXO.

CAROL DIDRICK'S LITTLE RED BOOK ON OLD GARDEN ROSES. Where to get them and where to plant them. An introduction to OLD GARDEN ROSES. Each book signed and numbered. Send $14.95 post paid. CAROL DIDRICK, 1555 Willard Dr., Orrville, OH 44667. *Please add $2 for out of country mailing.

BOTANICAL CRAFTS
PRESSED FLOWERS and Potpourri available for your botanical crafts. Call or write today: BLOSSOMS & BEEVES, 6326 Corinth Rd., Longmont, CO 80501. (303) 772-6616.

BROMELIADS
TILLANDSIAS—EASY TO GROW WITHOUT SOIL! Large selection available on our retail and wholesale lists. HOLLADAY JUNGLE, Dept. B.P.O. Box 5727, Fresno, CA 93735. (209) 229-9858.

BULBS
Bulbous Plant Journal, HERBERTIA and Quarterly Newsletter. Color-filled articles on bulbs, corms and tubers of Amaryllidaceae and related families. $20/yr. APLS-AH, P.O. Box 985, National City, CA 92030-0241.

BUSINESS OPPORTUNITIES
Let the government finance your new or existing small business. Grants/loans to $500,000 yearly. Free recorded message: (707) 449-6600. (L65).

LANDSCAPE CONSTRUCTION & DESIGN COMPANY FOR SALE. Well established landscape construction and design company located in Central Maine. Excellent reputation for "quality" work, with an established customer base. Revenue approximately $520K annually. Purchase price $260K plus receivables. Call ANANIA STRAND & ASSOCIATES, 1-207-871-1661.

CATTLEYA SUCCULENTS
HUNDREDS OF "WEIRD"—"EXOTIC"—"UNUSUAL" forms to choose from...Current catalog...$2 (Refundable). K & L CACTUS/SUCCULENT NURSERY, 12712 Stockton Blvd., Galt, CA 95632.

CARNIVOROUS PLANTS
Carnivorous (Insectivorous) Plants, woodland terrarium plants, supplies and books. Color brochure free. PETER PAULS NURSERIES, Canandaigua, NY 14424.
DAYLILIES

Tetraploid Hybrids, Rhododendrons, Dwarf and Eared varieties. All are hardly dormant homegrown in central Illinois' rich prairie soils. All orders are freshly dug and well packed. Send $4 (fully refundable) for your 1990 Color Perennial Catalog. KLEHM NURSERY, Rt. 5, Box 197 Penny Rd., Barrington, IL 60010-9555. (1-800-553-3715).

HERBS

HOSTAS

GREENHOUSE ACCESSORIES
GOATSKIN GLOVES. Tough, lightweight, napa goat skin textured and becomes form fitting, giving wearer ultimate in fit, grip, dexterity. Natural lanolin in leather keeps hands soft. Sizes 7-10 or send outline of hand. $9.50 postpaid. PUTNAM'S, Box 246-AH, Wilton, NH 03086.

GROUND COVERS
QUALITY GROUND COVERS AND PERENNIALS. Aegopodium, European Ginger, Ives Lamium, Hardy Cactus, Plumbago, Sweet Woodruff, Sedums, Vinca. Over 100 varieties. GILSON GARDENS, INC., Dept. H, P.O. Box 277, Perry, Ok 73071.

HELP WANTED
We at the American Horticultural Society are often asked to refer individuals for significant horticultural positions around the country. We are not in a position to offer full placement services to candidates or employers. However, as a service to our members, both individuals and employers alike, we would be very glad to receive resumes and cover letters of individuals seeking jobs and employers seeking candidates. All responsibility for checking references and determining the appropriateness of both position and candidate rests with the individuals. AHS's participation in this activity is only to serve as a connecting point for members of the Society. Inquiries and informational material should be sent to: Horticultural Employment, American Horticultural Society, 7931 East Boulevard Dr., Alexandria, VA 22307.
Rare Phacelia Saved from Extinction

The Nature Conservancy has launched a campaign to purchase the last remaining stronghold of the clay phacelia (Phacelia argillacea), a delicate wildflower hovering on the brink of extinction. For over 75 years the clay phacelia was thought to be extinct, but in 1971 it was rediscovered on a rocky slope in Spanish Fork Canyon, Utah. In 1988 it was discovered that the purplish blue wildflowers were pollinated by an equally rare species of bee—Hylaeus granulatus. Today the clay phacelia—or scorpion plant—is federally listed as endangered.

The plant’s slope is heavily used by deer and sheep and populations have declined by 90 percent over the past nine years. In May 1989 only 20 plants remained. Dave Livermore, head of The Nature Conservancy’s Utah efforts observed, “In the last few years, wild native plants have contributed greatly to cancer research and other medical developments. The loss of the clay phacelia and other plant species around the globe represents future losses of medical and other benefits to the generations that follow.”

No-Salt Insurance

Many of the products used during the winter to keep neighbors from tripping on sidewalks and vehicles from skidding on roadways contain salt that can kill plants ranging from lawns to trees. Plant lovers will use alternative substances, such as urea, to melt ice and snow, but local governments and neighbors may not always be so conscientious.

Salt injury can resemble damage caused by drought or pollution, including delay in leaf budbreak and flowering; stunted foliage and buds; reduced shoot growth; tip or margin foliage browning; crown thinning and tufting of foliage at the tips of branches; premature fall coloration and defoliation; and dead twigs.

When salt is present in the soil, water will be drawn to the salt and become unavailable to plant roots. In high concentrations, the salt will even siphon water out of the roots so that the plant becomes desiccated. Salt can also damage the soil’s structure and raise its pH.

Gypsum helps in two ways. The negatively charged sulfate ions in gypsum bond with the positive sodium ions to form sodium sulfate, a highly soluble salt that is quickly leached from the soil. The positive calcium ions left from the gypsum then bond with negative clay molecules making the soil more permeable.

Gypsum is probably best known to gardeners for this effect of helping to aerate compacted soil. The Bartlett company says applying 200 to 400 pounds per 1,000-square feet of soil will both neutralize salt and break up compacted soil. It is not environmentally harmful when used in such amounts.

For more information write: The Nature Conservancy, 1815 North Lynn Street, Arlington, VA 22209 or The Nature Conservancy, Great Basin Field Office, P.O. Box 11486, Pioneer Station, Salt Lake City, UT 84147-0486.